en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

陈再刚,E-mail:zgchen@home.swjtu.edu.cn

中图分类号:U266

文献标识码:A

文章编号:1672-6553-2023-21(3)-017-013

DOI:10.6052/1672-6553-2022-071

参考文献 1
杨绍普,刘永强.轨道车辆动力学与控制研究进展 [J].动力学与控制学报,2020,18(3)∶1-4.YANG S P,LIU Y Q.Development of railway vehicle dynamics and control [J].Journal of Dynamics and Control,2020,18(3):1-4.(in Chinese)
参考文献 2
缪炳荣,张卫华,池茂儒,等.下一代高速列车关键技术特征分析及展望 [J].铁道学报,2019,41(3)∶58-70.MIAO B R,ZHANG W H,CHI M R,et al.Analysis and prospects of key technical features of next generation high speed trains [J].Journal of the China Railway Society,2019,41(3):58-70.(in Chinese)
参考文献 3
贾洪龙,尹振坤,梁云,等.轨道车辆轴箱内置式转向架技术发展研究 [J].城市轨道交通研究,2021,24(9)∶59-63.JIA H L,YIN Z K,LIANG Y,et al.Research on development of railway vehicle axle box in-board bogie technology [J].Urban Mass Transit,2021,24(9):59-63.(in Chinese)
参考文献 4
张隶新.轴箱内置和外置高速转向架的动力学性能对比 [J].铁道科学与工程学报,2021,18(3)∶581-587.ZHANG L X.Dynamics analysis of high-speed railway bogies with inner bearing and outer bearing suspensions [J].Journal of Railway Science and Engineering,2021,18(3):581-587.(in Chinese)
参考文献 5
刘承聪.160 km/h市域车辆内轴箱非动力转向架设计及动力学性能研究[D].成都∶西南交通大学,2020.LIU C C.Research on design and dynamic performance of non-powered inner axle box bogie for 160km/h suburban vehicle[D].Chengdu:Southwest Jiaotong University,2020.(in Chinese)
参考文献 6
WU B W,CHEN G X,LV J Z,et al.Effect of the axlebox arrangement of the bogie and the primary suspension parameters on the rail corrugation at the sharp curve metro track [J].Wear,2019,(426-427):1828-1836.
参考文献 7
陈再刚,刘禹清,周子伟,等.轨道交通牵引动力传动系统动力学研究综述 [J].交通运输工程学报,2021,21(6)∶31-49.CHEN Z G,LIU Y Q,ZHOU Z W,et al.Summary of dynamics research on traction power transmission system of rail transits [J].Journal of Traffic and Transportation Engineering,2021,21(6):31-49.(in Chinese)
参考文献 8
LATA M.The modern wheelset drive system and possibilities of modelling the torsion dynamics [J].Transport,2008,23(2):172-181.
参考文献 9
ALFI S,MAZZOLA L,BRUNI S.Effect of motor connection on the critical speed of high-speed railway vehicles [J].Vehicle System Dynamics,2008,46(1):201-214.
参考文献 10
金鼎昌,罗赟,黄志辉.牵引电动机悬挂方式对机车或动车动力学性能的影响 [J].铁道学报,1994(S1):43-47.JIN D C,LUO Y,HUANG Z H.The effect of the driving motor’s suspension type on the rail way vehicle dynamics [J].Journal of the China Railway Society,1994(S1):43-47.(in Chinese)
参考文献 11
张红军,陈喜红,孙永鹏,等.我国200 km/h速度等级高速客运机车转向架平台设计分析 [J].铁道学报,2007,29(4)∶101-106.ZHANG H J,CHEN X H,SUN Y P,et al.The analysis of bogie platform of 200 km/h high-speed passenger locomotive in our country [J].Journal of the China Railway Society,2007,29(4):101-106.(in Chinese)
参考文献 12
罗赟,孙永鹏,张红军,等.架悬C0-C0轴式机车电机布置及悬挂的研究 [J].铁道学报,2006,28(6):41-45.LUO Y,SUN Y P,ZHANG H J,et al.Research on the motor arrangement and suspension of the six-axles locomotive with driving equipment mounted in the frame [J].Journal of the China Railway Society,2006,28(6):41-45.(in Chinese)
参考文献 13
罗赟,陈康,金鼎昌.270km·h-1动力车驱动制动单元悬挂参数的优化 [J].中国铁道科学,2004(2):62-66.LUO Y,CHEN K,JIN D C.Optimization of suspension parameters of brake-unit driven by 270 km·h-1 power unit [J].China Railway Science,2004(2):62-66.(in Chinese)
参考文献 14
罗赟,罗世辉,金鼎昌.架悬机车驱动装置悬挂参数及结构的研究 [J].中国铁道科学,2005,26(5):57-61.LUO Y,LUO S H,JIN D C.Research on driving equipment suspension parameters and the structures of locomotives with motor elastically mounted on the frame [J].China Railway Science,2005,26(5):57-61.(in Chinese)
参考文献 15
姚远,张开林,张红军,等.机车驱动系统弹性架悬的机理与应用研究 [J].铁道学报,2013,35(4)∶23-29.YAO Y,ZHANG K L,ZHANG H J,et al.Mechanism of drive system elastic suspension and its application [J].Journal of the China Railway Society,2013,35(4):23-29.(in Chinese)
参考文献 16
姚远,张开林,罗世辉,等.驱动系统弹性架悬对机车动力学性能影响机理 [J].振动工程学报,2012,25(5)∶481-487.YAO Y,ZHANG K L,LUO S H,et al.The mechanism of dynamic effect of the driving system elastically mounted on the bogie frame of locomotive [J].Journal of Vibration Engineering,2012,25(5):481-487.(in Chinese)
参考文献 17
黄彩虹,梁树林,曾京,等.牵引电机架悬参数对动车转向架稳定性的影响 [J].铁道车辆,2014,52(11):1-5+45.HUANG C H,LIANG S L,ZENG J,et al.Effect of the suspension parameter of traction motors on the stability of motor car bogies [J].Rolling Stock,2014,52(11):1-5+45(in Chinese)
参考文献 18
徐坤,曾京,黄彩虹,等.高速动车电机架悬参数对转向架动力学性能影响研究 [J].振动与冲击,2018,37(20)∶95-100+108.XU K,ZENG J,HUANG C H,et al.The influence of motor elastic bogie-suspended parameters of high-speed vehicles on the dynamic performance of bogies [J].Journal of Vibration and Shock,2018,37(20):95-100+108.(in Chinese)
参考文献 19
姚远,宋亚东,李广,等.高速列车转向架的主动稳定性研究 [J].动力学与控制学报,2020,18(3)∶31-37.YAO Y,SONG Y D,LI G,et al.Research on active stability of high-speed train bogies [J].Journal of Dynamics and Control,2020,18(3):31-37.(in Chinese)
参考文献 20
CHEN Z G,ZHAI W M,WANG K Y.A locomotive-track coupled vertical dynamics model with gear transmissions [J].Vehicle System Dynamics,2017,55(2):244-267.
参考文献 21
ZHANG T,CHEN Z G,ZHAI W M,et al.Establishment and validation of a locomotive-track coupled spatial dynamics model considering dynamic effect of gear transmissions [J].Mechanical Systems and Signal Processing,2019,119:328-345.
参考文献 22
HUANG G H,ZHOU N,ZHANG W H.Effect of internal dynamic excitation of the traction system on the dynamic behavior of a high-speed train [J].Journal of Rail and Rapid Transit,2016,230(8):1899-1907.
参考文献 23
WANG Z W,YIN Z H,ALLEN P,et al.Dynamic analysis of enhanced gear transmissions in the vehicle-track coupled dynamic system of a high-speed train [J].Vehicle System Dynamics,2022,60(8):2716-2738.
参考文献 24
WANG Z W,YIN Z H,WANG R C,et al.Coupled dynamic behaviour of a transmission system with gear eccentricities for a high-speed train [J].Vehicle System Dynamics,2021,59(4):613-634.
参考文献 25
肖乾,程玉琦,许旭.轨道不平顺影响下高速列车齿轮传动系统的振动特性分析 [J].机械传动,2021,45(4)∶135-141.XIAO Q,CHENG Y Q,XU X.Vibration characteristic analysis of high-speed train gear transmission system under track irregularity [J].Journal of Mechanical Transmission,2021,45(4):135-141.(in Chinese)
参考文献 26
寻麒儒,魏静,吴昊,等.曲线通过参数对高速列车牵引齿轮传动系统动力学响应影响研究 [J].振动与冲击,2022,41(13)∶283-293.XUN Q R,WEI J,WU H,et al.Effects of curve passing parameters on dynamic response of traction gear transmission system of high-speed train [J].Journal of Vibration and Shock,2022,41(13):283-293.(in Chinese)
参考文献 27
任辉,周平.多体系统动力学的常用积分器算法 [J].动力学与控制学报,2021,19(1)∶1-28.REN H,ZHOU P.Implementation details of DAE integrators for multibody system dynamics [J].Journal of Dynamics and Control,2021,19(1):1-28.(in Chinese)
参考文献 28
DIN 3990-1-1987,Calculation of load capacity of cylindrical gears:Introduction and general influence factors [S].Berlin:German Institute for Standardisation,1987.
参考文献 29
机车车辆动力学性能评定及试验鉴定规范:GB/T 5599-2019[S].北京∶中国标准出版社,2019.Specification for dynamic performance assessment and testing verification of rolling stock:GB/T 5599-2019 [S].Beijing:Standard Press of China,2019.(in Chinese)
目录contents

    摘要

    为探明齿轮箱吊杆节点刚度对驱动系统悬挂节点力和驱动系统振动加速度的影响规律,以某型轴箱内置式高速动车为研究对象,基于多体动力学理论,建立了考虑驱动系统和齿轮啮合的车辆系统动力学模型,研究了齿轮箱吊杆节点刚度对齿轮箱吊杆节点力、电机吊点力、齿轮箱车轴铰接力、车辆平稳性和驱动系统振动加速度的影响.研究结果表明:由于1、2位驱动系统的齿轮啮合力方向不同,1位驱动系统悬挂节点的垂向力比2位驱动系统悬挂节点的垂向力大.齿轮箱吊杆节点刚度在1~30 MN/m增大时,1位齿轮箱吊杆节点力增大,1位电机吊点力减小,1位齿轮箱车轴铰接纵向力增大、横向力减小;2位齿轮箱吊杆节点力增大,2位电机吊点垂向力增大,纵向力和横向力减小,2位齿轮箱车轴铰接纵向力减小,横向力增大.齿轮箱吊杆节点刚度在30~100MN/m增大时,各悬挂节点力变化不明显.此外,车体的平稳性指标、电机和齿轮箱的振动加速度受齿轮箱吊杆节点刚度变化的影响较小.

    Abstract

    To reveal the law of the gearbox rod suspension stiffness on the suspension force and vibration acceleration of the drive system, a certain type of high-speed train with the built-in axle box is taken as the study object, and a vehicle dynamics model considering drive system and gear engagement is established based on the multi-body dynamics theory. In addition, the effect of the suspension stiffness of the gearbox rod on the suspension force of the gearbox rod and the motor, the joint force between the gearbox and the axle, the vehicle stability and the vibration acceleration of the drive system are studied. The research results show that due to the different direction of the gear meshing force of the first drive system and the second drive system, the vertical suspension force of the first drive system is larger than that of the second drive system. When the suspension stiffness of the gearbox rod increases from 1 MN/m to 30 MN/m, the suspension force of the first gearbox and the first motor increases and decreases respectively, as well as the longitudinal force and the lateral force of the first connection point for gearbox and axle increases and decreases respectively. Moreover, the suspension force of the second gearbox and the vertical suspension force of the second motor increase, but the longitudinal suspension force and the lateral suspension force of the second motor decrease, and the longitudinal force of the second connection point for gearbox and axle decreases and increases respectively. However, the change in the suspension force is not obvious when the suspension stiffness of the gearbox rod increases from 30 MN/m to 100 MN/m. Furthermore, the stability index of the car body, as well as the vibration acceleration of the motor and the gearbox are little affected by the changing suspension stiffness of the gearbox rod.

  • 引言

  • 为满足我国经济飞速发展的客观需要,客运高速化、货运重载化已成为轨道交通领域发展的重要方向.随着运行速度的不断提高,轮轨相互作用显著增加,高速列车的持续可靠运行受到严重挑战[1].与传统的轴箱外置式转向架相比,轴箱内置式转向架将轴箱悬挂装置安装在轮对内侧,减小了构架和车轴等的横向尺寸和质量,转向架整体减重约30%[2],满足高速转向架轻量化设计和轮轨低动力作用的要求,将成为下一代高速列车发展的关键技术方向之一.

  • 近年来,众多学者对轴箱内置式转向架开展了深入研究.贾洪龙等[3]对国内外轴箱内置式转向架的技术研究现状和市场应用情况进行了介绍,指明新型、更高速的内置式轴箱转向架技术将会得到蓬勃发展.张隶新[4]以时速350 km/h的货运动车组为研究对象,对比研究了轴箱内置和轴箱外置高速转向架的动力学性能.研究结果表明,与轴箱外置式转向架相比,轴箱内置式转向架的轮轨力至少降低20%,车轮踏面磨耗量和踏面磨耗深度至少降低30%.刘承聪[5]以某市域车辆内置轴箱非动力转向架为研究对象,对该型车辆的动力学性能进行了评估,并对车辆主要悬挂参数进行了优化.Wu等[6]基于多体动力学理论和有限元方法,研究了轴箱布置方式对钢轨波磨的影响.结果表明,当车辆高速通过曲线时,内轴箱转向架的轮轨冲角明显小于外轴箱转向架,有利于抑制钢轨波磨.以上研究表明轴箱内置式转向架在降低转向架重量,减小轮轨相互动力作用和轮轨磨耗,以及提高车辆曲线通过性能等方面具有显著的效果.

  • 高速列车驱动系统包括牵引电机、齿轮箱、轮对等部件.牵引电机通过电磁效应将电能转化为机械能,通过齿轮传动装置将驱动转矩传递至轮轨界面产生纵向蠕滑力驱动车辆前进[7].因此,作为高速列车的“心脏”与“动脉”,驱动系统悬挂设计及其相关的动力学问题是动力转向架设计的一个关键性技术问题,国内外学者目前主要研究了轴箱外置式转向架中驱动系统的不同悬挂方式和悬挂参数对车辆动力学性能的影响.Lata[8]对电机刚性轴悬、轮对空心轴架悬、万向轴式架悬这三种驱动系统悬挂方式的基本结构进行了介绍,并指明电机刚性轴悬的车辆簧下质量大,适用于运行速度较低的货运机车.Alfi等[9]通过对车辆线性临界速度和非线性临界速度进行计算,研究了电机弹性悬挂对车辆稳定性的影响,研究结果表明,电机悬挂的刚度和阻尼特性直接影响车辆稳定性.金鼎昌等[10]计算了机车或动车采用轴悬式、架悬式、全体悬式和半体悬式的车辆稳定性、车辆平稳性和车辆曲线通过性,对比分析了牵引电机悬挂方式对机车或动车动力学性能的影响.张红军等[11]对我国某速度为200km/h的客运机车转向架技术方案进行了研究,发现驱动单元通过吊杆弹性悬挂在构架上,能使簧间转动惯量减小,同时使簧间横向质量解耦,有利于改善机车横向动力学性能.罗赟等[12-14]利用SIMPACK软件建立机车动力学模型,研究了牵引电机采用不同布置方式、驱动装置,采用不同悬挂方式以及悬挂装置悬挂参数对机车的稳定性、直线运行性能和曲线通过性能的影响.姚远等[1516]从动力吸振的角度研究了驱动系统弹性对机车动力学性能的影响机理,通过动力学仿真对理论分析结果进行了验证,并根据反共振理论提出了驱动系统悬挂参数的选取原则.黄彩虹等[17]结合模态分析技术,研究了电机悬挂参数和质量参数对车辆稳定性的影响.徐坤等[18]针对CRH3型动车转向架电机悬挂方式,建立了8自由度单转向架横向动力学模型,研究了不同电机悬挂参数对构架横移和电机横移的影响规律.姚远等[19]提出了一种高速列车稳定性主动控制方法,对动力转向架驱动系统采用主动弹性悬挂方式,并利用遗传算法优化了驱动系统的悬挂参数.

  • 目前,高速列车驱动系统悬挂动力学相关研究主要集中于电机悬挂方式或电机悬挂参数对车辆动力学性能的影响,而驱动力矩从牵引电机经过齿轮传动装置到轮轨界面的动力传递路径被忽略.然而,驱动系统内部因牵引力矩传递和齿轮啮合刚度引起的动态啮合力将显著影响各部件的受力状态和服役特性,因此,在对驱动系统悬挂参数选取和悬挂节点载荷研究时有必要考虑牵引动力传递和齿轮啮合作用的影响.基于车辆-轨道耦合动力学理论和齿轮动力学理论,Chen等[20]建立了考虑齿轮动态啮合作用的机车-轨道耦合垂向动力学模型,研究了机车-轨道-齿轮传动系统之间的动态相互耦合作用.在此基础上,Zhang等[21]建立了机车-轨道耦合空间动力学模型,其中考虑了齿轮传动系统的动力学效应,并通过与现场试验数据对比对模型进行了验证.Huang等[22]建立了包括驱动系统的高速动车多体动力学模型,研究了牵引传动系统内部动态激励对高速列车动态性能的影响.Wang等[2324]基于经典的车辆-轨道耦合动力学理论以及齿轮和轴承动力学理论,建立了包括齿轮副和轴承的高速列车动力学模型,并对列车服役工况下的车辆、齿轮副和轴承之间的动态相互作用进行了研究.肖乾等[25]利用多体动力学软件SIMPACK建立了包含齿轮传动系统的高速列车整车动力学模型,对轨道不平顺影响下的高速列车齿轮传动系统的振动特性进行了分析.寻麒儒等[26]利用SIMPACK软件建立了考虑齿轮传动系统的高速列车动力学模型,研究了曲线通过参数对高速列车齿轮传动系统动力学响应的影响.

  • 目前,高速列车传动系统动力学领域主要研究列车服役工况下的车辆系统动态性能和电机、齿轮、轴承等牵引传动系统零部件的动力学特性,而对于齿轮啮合作用对驱动系统悬挂动力学的研究还比较缺乏.作为驱动系统关键悬挂节点之一,齿轮箱吊杆节点参数(如齿轮箱吊杆节点刚度)选择不合理,会使驱动系统悬挂节点动态力和驱动部件振动过大,进而导致电机吊座、齿轮箱吊座处应力增大,进而加快电机吊座、齿轮箱吊座的疲劳破坏,对驱动系统的正常服役造成不利影响.因此,为减小驱动系统悬挂节点动态力和驱动部件振动水平,保障驱动系统的服役可靠性与安全性,有必要考虑齿轮啮合作用的影响,对齿轮箱吊杆节点刚度参数进行研究.此外,由于轴箱内置式转向架内部空间有限,其驱动系统的悬挂设计及相关的动力学问题比轴箱外置式转向架更加突出,但是相应的文献尚未见报道.

  • 综上所述,本文以我国研制的某型轴箱内置式高速动车为研究对象,基于多体动力学理论和车辆动力学理论,建立考虑驱动系统和齿轮啮合作用的轴箱内置式高速动车动力学模型,研究高速列车在不同运行速度下,齿轮箱吊杆节点刚度对驱动系统悬吊节点力(齿轮箱吊杆力、电机吊点力及车轴铰接力)、车辆平稳性指标和驱动系统振动加速度的影响规律.研究结果可为齿轮箱吊杆节点刚度的合理选取和驱动系统的参数优化提供指导.

  • 1 考虑驱动系统和齿轮啮合的轴箱内置式高速动车动力学模型

  • SIMPACK作为铁路行业动力学领域应用最广泛的多体动力学软件之一,采用相对坐标系建模方法和完全递归算法自动建立并求解多体系统动力学方程.多体系统动力学得到的动力学方程通常是微分代数方程组(Differential-Algebraic Equations,DAEs),一般形式可表示为式(1).SIMPACK动力学模型求解采用SODASRT2求解器,该求解器采用的算法为向后差分公式(Backward Difference Formula,BDF),该算法是一种隐式多步、变阶数、变步长的算法[27].

  • Mq¨+CqTλ=QC(q,t)=0
    (1)
  • 式中,q为广义坐标向量; M为广义质量矩阵; Q为广义力向量; C为约束代数方程; Cq为约束方程对应的雅克比矩阵,T为矩阵转置符号; 为拉格朗日乘子; t为时间.

  • 本文以我国研制的某型轴箱内置式高速动车为研究对象,考虑驱动系统机械结构和齿轮啮合作用,采用多体动力学软件SIMPACK建立了轴箱内置式高速动车的多刚体系统动力学模型,如图1所示.车辆系统包括车体、构架、轮对、轴箱、驱动系统以及一、二系悬挂系统,整个车辆系统共有158个自由度.车轮踏面采用LMB_10型踏面,钢轨采用60N型钢轨,轮轨间摩擦系数取0.3.动力学模型中考虑了轮轨接触非线性特性、一系垂向阻尼非线性特性、二系横向阻尼非线性特性、抗蛇行减振器非线性特性、二系横向止挡非线性特性等,如图2和图3所示.

  • 图1 轴箱内置式高速动车动力学模型

  • Fig.1 Dynamics model of high-speed EMU with the built-in axle box

  • 图2 轮轨接触非线性特性

  • Fig.2 Nonlinear characteristics of wheel rail contact

  • 图3 悬挂元件的非线性特性

  • Fig.3 Nonlinear characteristics of suspension elements

  • 图4 驱动系统动力学模型

  • Fig.4 Dynamics model of the drive system

  • 驱动系统的动力学模型如图4(a)所示,驱动系统由牵引电机、联轴节、齿轮箱、齿轮副及悬挂部件组成.其中,牵引电机通过电机吊点(橡胶节点)与构架连接,齿轮箱一端通过齿轮箱吊杆(吊杆两端为橡胶节点)与构架连接,另一端通过轴承与车轴铰接,电机轴与小齿轮轴通过联轴节连接,电机壳体和齿轮箱箱体通过四个橡胶节点连接.模型中的橡胶节点和联轴节均采用43:Bush Cmp力元,数学模型可表示为式(2).电机牵引转矩通过联轴节传递到小齿轮,再通过齿轮啮合传递到大齿轮和轮对,产生纵向蠕滑力驱动车辆前进.其中,齿轮啮合作用采用SIMPACK中的225:Gear pair力元,如图4(b)所示,该力元根据建立齿轮传动系统动力学模型时输入的齿轮基本几何参数,按照DIN 3990-1-1987标准[28]计算出齿轮啮合刚度,再通过齿轮啮合刚度和参与啮合轮齿的齿面渗透量计算啮合力.齿轮啮合刚度的完整计算过程可表示为式(3)~(6).驱动系统主要参数如表1和表2所示.

  • 表1 驱动部件参数

  • Table1 Parameters of drive parts

  • 表2 齿轮副参数

  • Table2 Parameters of the gear pair

  • FxFyFzTαTβTγ=kxxF+cxx˙F+Fnom _xkyyF+cyy˙F+Fnom _ykzzF+czz˙F+Fnom zkααT+cαα˙T+Tnom _αkββT+cββ˙T+Tnom _βkγγT+cγγ˙T+Tnom _γ
    (2)
  • 式中,FxFyFzxyz方向的力; TαTβTγ为绕xyz轴的力矩.kxkykzxyz方向的平动刚度; kαkβkγ为绕xyz轴的扭转刚度; cxcyczxyz方向的平动阻尼; kαkβkγ为绕xyz轴的扭转阻尼; xFyFzFxyz方向的平动位移; αTβTγT为绕xyz轴的扭转角度,Fnom_xFnom_yFnom_zxyz方向的名义预加载力; Tnom_αTnom_βTnom_γ为绕xyz轴的名义预加载力矩.

  • c'=c'thCMCRCBcosβ0
    (3)
  • cmax=c'CR
    (4)
  • SR=CminCmax
    (5)
  • cm=cmax1-1-SRs(φ)maxs1,s22
    (6)
  • 式中,c′为单对齿刚度; cth为单对齿刚度的理论值; CM为理论修正系数; CR为轮坯结构系数; CB为基本齿廓系数; β0为齿轮螺旋角; cmax为啮合刚度最大值; cmin为啮合刚度最小值; SR为刚度比; cm为齿轮啮合刚度; sφ)为齿面接触路径; s1为进入啮合时接触点与节点的距离; s2为退出啮合时接触点与节点的距离.

  • 2 齿轮箱吊杆节点刚度对驱动系统悬挂节点力的影响

  • 图5 牵引特性及阻力曲线

  • Fig.5 Curve of traction characteristics and resistance

  • 本节考虑车辆的典型运营速度,分析车辆以200km/h、250km/h、300km/h、350km/h、400km/h五种速度等级运行时,齿轮箱吊杆节点刚度变化对驱动系统悬挂节点力(齿轮箱吊杆节点力、电机吊点力和齿轮箱车轴铰接力)的影响.橡胶节点的刚度通常在10MN/m数量级别[14],为研究齿轮箱吊杆节点刚度参数在更大范围变化对系统动力学特性的影响规律,设置齿轮箱吊杆节点刚度参数如表3所示,由于齿轮箱吊杆节点刚度的径轴比为一常数,本文以齿轮箱吊杆节点径向刚度为研究变量.在进行动力学分析时,充分考虑车辆运行时受到的电机牵引转矩、齿轮啮合力和运行阻力.列车的牵引特性曲线及阻力曲线如图5所示,轨道不平顺激励采用武广谱,如图6所示.

  • 表3 齿轮箱吊杆节点刚度参数

  • Table3 Stiffness parameters of gearbox rod

  • 图6 轨道随机不平顺

  • Fig.6 Track random irregularity

  • 图7 齿轮啮合刚度

  • Fig.7 Mesh stiffness of gear pair

  • 计算获得车辆以400 km/h速度运行时的齿轮时变啮合刚度和齿轮啮合力,如图7和图8所示,1位和2位齿轮传动系统的啮合力大小基本相同,但由于1位和2位驱动系统的齿轮啮合力方向不同,会对驱动系统悬挂节点的受力状态造成影响,如图9所示.图9中:v为车辆运行速度,T为驱动转矩,ωp为驱动齿轮角速度,ωw为轮对角速度,Fm为齿轮啮合力.因此,为进一步分析这种影响,对比了1位和2位驱动系统悬挂节点垂向力的时域曲线.为不失一般性,齿轮箱吊杆节点刚度分别取最小值1MN/m、中间值50MN/m和最大值100MN/m.1位和2位齿轮箱吊杆节点垂向力的时域曲线如图10所示,以齿轮箱吊杆节点刚度为50MN/m为例,1位齿轮箱吊杆节点垂向力均值为-7.63 kN,最大值为-16 kN,2位齿轮箱吊杆节点垂向力均值为1.28 kN,最大值为10.84 kN,1位齿轮箱吊杆节点垂向力更大(“-”代表方向).1位和2位电机吊点垂向力的时域曲线如图11所示,以齿轮箱吊杆节点刚度为50MN/m为例,1位电机吊点垂向力均值为-6.48 kN,最大值为-14.21 kN,2位电机吊点垂向力均值为-3.94 kN,最大值为-11.2 kN,1位电机吊点垂向力更大(“-”代表方向).1位和2位齿轮箱车轴铰接垂向力的时域曲线如图12所示,以齿轮箱吊杆节点刚度为50MN/m为例,1位齿轮箱车轴铰接垂向力均值为10.84kN,最大值为27.42kN,2位电机吊点垂向力均值为-5.47kN,最大值为-14.70kN,1位齿轮箱车轴铰接垂向力更大(“-”代表方向).综上,由于1位和2位驱动系统的齿轮啮合力方向不同,导致1位驱动系统悬挂节点的垂向力比2位驱动系统悬挂节点的垂向力大.

  • 图8 齿轮啮合力

  • Fig.8 Mesh force of gear pair

  • 图9 驱动转矩方向及齿轮啮合方向

  • Fig.9 Direction of driving torque and gear engagement

  • 图10 齿轮箱吊杆节点垂向力时域曲线

  • Fig.10 Time domain curve of the vertical suspension force of the gearbox rod

  • 图11 电机吊点垂向力时域曲线

  • Fig.11 Time domain curve of the vertical suspension force of the motor

  • 图12 齿轮箱车轴铰接垂向力时域曲线

  • Fig.12 Time domain curve of the vertical joint force between gearbox and axle

  • 为进一步研究不同车辆运行速度下,齿轮箱吊杆节点刚度对驱动系统悬挂节点力的影响.以悬挂节点力的最大值和RMS值为统计指标,分析齿轮箱吊杆节点刚度对1、2位齿轮箱吊杆节点动态力,1、2位电机吊点动态力以及1、2位齿轮箱车轴铰接动态力的影响.

  • 图13 齿轮箱吊杆节点动态力

  • Fig.13 Dynamic suspension force of the gearbox rod

  • 图14 电机吊点动态力

  • Fig.14 Dynamic suspension force of the motor

  • 1 位和2位的齿轮箱吊杆节点动态力如图13所示.其中,xyz为悬挂节点力在纵向、横向和垂向的分量.各运行速度下,1位齿轮箱吊杆节点力的变化规律类似,随着齿轮箱吊杆节点刚度的增大,1位齿轮箱吊杆节点的纵向力和横向力缓慢增加,垂向力在吊杆节点刚度为1~30MN/m增长较快,在吊杆节点刚度为30~100MN/m基本不变.此外,1位齿轮箱吊杆节点的纵向力和横向力较小,但垂向力较大,这表明1位齿轮箱吊杆节点主要承受垂向载荷.2位齿轮箱吊杆节点纵向力和横向力的变化规律与1位齿轮箱吊杆节点类似,但2位吊杆节点垂向力的RMS值在吊杆节点刚度为1~30MN/m,先减小后增大.此外,2位吊杆节点垂向力的最大值和RMS值均比1位吊杆节点小,以车辆运行速度为400km/h为例,2位吊杆节点垂向力的最大值比1位吊杆节点小约7 kN,RMS值比1位吊杆小约4.5 kN,这与1、2位驱动系统的齿轮啮合力方向不同有关.

  • 1 位和2位的电机吊点动态力如图14所示.随着齿轮箱吊杆节点刚度的增大,电机吊点力在吊杆节点刚度为1~30MN/m,明显减小,在吊杆节点刚度为30~100MN/m,基本不变.此外,电机吊点的垂向力和纵向力较大,横向力较小,这表明电机吊点主要承受垂向载荷和纵向载荷.2位电机吊点的纵向力和横向力的变化规律与1位电机吊点类似,但2位电机吊点的垂向力在吊杆节点刚度为1~30MN/m逐渐增大.此外,2位电机吊点垂向力的最大值和RMS值均比1位电机吊点小.

  • 1 位和2位的齿轮箱车轴铰接动态力如图15所示.随着齿轮箱吊杆节点刚度的增大,齿轮箱车轴铰接垂向力总体变化不大,在吊杆节点刚度为1~30MN/m时,齿轮箱车轴铰接纵向力逐渐增大,横向力逐渐减小,在吊杆节点刚度为30~100MN/m时,齿轮箱车轴铰接纵向力和横向力基本不变.随着齿轮箱吊杆节点刚度的增大,2位齿轮箱车轴铰接垂向力总体变化不大,在吊杆节点刚度为1~30MN/m时,齿轮箱车轴铰接纵向力逐渐减小,横向力逐渐增大,在吊杆节点刚度为30~100MN/m时,齿轮箱车轴铰接纵向力和横向力基本不变.

  • 图15 齿轮箱车轴铰接动态力

  • Fig.15 Dynamic joint force between gearbox and axle

  • 3 齿轮箱吊杆节点刚度对车辆平稳性和驱动系统振动的影响

  • 分析了车辆以200km/h、250km/h、300km/h、350km/h、400km/h五种速度等级匀速运行时,齿轮箱吊杆节点刚度对车辆平稳性指标、电机振动加速度和齿轮箱振动加速度的影响.

  • 车辆平稳性指标如图16所示,车辆垂向平稳性指标随着车速的增大而增大,但受齿轮箱吊杆节点刚度变化的影响很小.车辆横向平稳性指标的变化规律与垂向平稳性指标的变化规律类似.此外,该型高速动车在相同运行速度下的横向平稳性指标大于垂向平稳性指标,但各运行速度下的垂向平稳性指标和横向平稳性指标均满足《机车车辆动力学性能评定及试验鉴定规范》GB/T5599-2019限值要求[29],且车辆运行平稳性等级为优.

  • 图16 车辆平稳性指标

  • Fig.16 Vehicle stability index

  • 驱动系统振动加速度的RMS值如图17所示.随着车辆运行速度的增大,电机垂向和横向振动加速度均明显增大; 随着齿轮箱吊杆节点刚度的增大,电机的垂向振动加速度和横向振动加速度略有增大; 随着车辆运行速度的增大,齿轮箱垂向和横向振动加速度均明显增大; 随着齿轮箱吊杆节点刚度的增大,齿轮箱的垂向振动加速度和横向振动加速度略有减小.

  • 图17 驱动系统振动加速度RMS值

  • Fig.17 RMS value of the vibration acceleration of the drive system

  • 综上,车体的平稳性指标、电机振动加速度和齿轮箱振动加速度随车辆运行速度的增大而增大,但受吊杆节点刚度变化影响较小.

  • 4 结论

  • 本文以我国研发的某型轴箱内置式高速动车为研究对象,建立考虑驱动系统和齿轮啮合的轴箱内置式高速动车车辆动力学模型,研究了齿轮箱吊杆节点刚度对齿轮箱吊杆节点力、电机吊点力、齿轮箱车轴铰接力、车辆平稳性和电机、齿轮箱振动加速度的影响规律.主要结论如下:

  • (1)由于1、2位驱动系统的齿轮啮合力方向不同,1位驱动系统各悬挂节点的垂向力比2位驱动系统各悬挂节点的垂向力大.

  • (2)齿轮箱吊杆节点刚度在1~30MN/m增大时,1位齿轮箱吊杆节点力增大,1位电机吊点力减小,1位齿轮箱车轴铰接纵向力增大,横向力减小; 2位齿轮箱吊杆节点力增大,2位电机吊点垂向力增大,纵向力和横向力减小,2位齿轮箱车轴铰接点纵向力减小,横向力增大.齿轮箱吊杆节点刚度在30~100MN/m增大时,齿轮箱吊杆节点纵向力和横向力缓慢增大,其余各悬挂节点力基本不变.

  • (3)随着车辆运行速度的增大,齿轮箱吊杆节点力、电机吊点力和齿轮箱车轴铰接力都增大,但各悬挂节点力的变化规律基本不变.

  • (4)车体的平稳性指标、电机振动加速度和齿轮箱振动加速度受车辆运行速度影响较大,且随车辆运行速度的增大而明显增大,但受吊杆节点刚度变化影响很小.

  • 参考文献

    • [1] 杨绍普,刘永强.轨道车辆动力学与控制研究进展 [J].动力学与控制学报,2020,18(3)∶1-4.YANG S P,LIU Y Q.Development of railway vehicle dynamics and control [J].Journal of Dynamics and Control,2020,18(3):1-4.(in Chinese)

    • [2] 缪炳荣,张卫华,池茂儒,等.下一代高速列车关键技术特征分析及展望 [J].铁道学报,2019,41(3)∶58-70.MIAO B R,ZHANG W H,CHI M R,et al.Analysis and prospects of key technical features of next generation high speed trains [J].Journal of the China Railway Society,2019,41(3):58-70.(in Chinese)

    • [3] 贾洪龙,尹振坤,梁云,等.轨道车辆轴箱内置式转向架技术发展研究 [J].城市轨道交通研究,2021,24(9)∶59-63.JIA H L,YIN Z K,LIANG Y,et al.Research on development of railway vehicle axle box in-board bogie technology [J].Urban Mass Transit,2021,24(9):59-63.(in Chinese)

    • [4] 张隶新.轴箱内置和外置高速转向架的动力学性能对比 [J].铁道科学与工程学报,2021,18(3)∶581-587.ZHANG L X.Dynamics analysis of high-speed railway bogies with inner bearing and outer bearing suspensions [J].Journal of Railway Science and Engineering,2021,18(3):581-587.(in Chinese)

    • [5] 刘承聪.160 km/h市域车辆内轴箱非动力转向架设计及动力学性能研究[D].成都∶西南交通大学,2020.LIU C C.Research on design and dynamic performance of non-powered inner axle box bogie for 160km/h suburban vehicle[D].Chengdu:Southwest Jiaotong University,2020.(in Chinese)

    • [6] WU B W,CHEN G X,LV J Z,et al.Effect of the axlebox arrangement of the bogie and the primary suspension parameters on the rail corrugation at the sharp curve metro track [J].Wear,2019,(426-427):1828-1836.

    • [7] 陈再刚,刘禹清,周子伟,等.轨道交通牵引动力传动系统动力学研究综述 [J].交通运输工程学报,2021,21(6)∶31-49.CHEN Z G,LIU Y Q,ZHOU Z W,et al.Summary of dynamics research on traction power transmission system of rail transits [J].Journal of Traffic and Transportation Engineering,2021,21(6):31-49.(in Chinese)

    • [8] LATA M.The modern wheelset drive system and possibilities of modelling the torsion dynamics [J].Transport,2008,23(2):172-181.

    • [9] ALFI S,MAZZOLA L,BRUNI S.Effect of motor connection on the critical speed of high-speed railway vehicles [J].Vehicle System Dynamics,2008,46(1):201-214.

    • [10] 金鼎昌,罗赟,黄志辉.牵引电动机悬挂方式对机车或动车动力学性能的影响 [J].铁道学报,1994(S1):43-47.JIN D C,LUO Y,HUANG Z H.The effect of the driving motor’s suspension type on the rail way vehicle dynamics [J].Journal of the China Railway Society,1994(S1):43-47.(in Chinese)

    • [11] 张红军,陈喜红,孙永鹏,等.我国200 km/h速度等级高速客运机车转向架平台设计分析 [J].铁道学报,2007,29(4)∶101-106.ZHANG H J,CHEN X H,SUN Y P,et al.The analysis of bogie platform of 200 km/h high-speed passenger locomotive in our country [J].Journal of the China Railway Society,2007,29(4):101-106.(in Chinese)

    • [12] 罗赟,孙永鹏,张红军,等.架悬C0-C0轴式机车电机布置及悬挂的研究 [J].铁道学报,2006,28(6):41-45.LUO Y,SUN Y P,ZHANG H J,et al.Research on the motor arrangement and suspension of the six-axles locomotive with driving equipment mounted in the frame [J].Journal of the China Railway Society,2006,28(6):41-45.(in Chinese)

    • [13] 罗赟,陈康,金鼎昌.270km·h-1动力车驱动制动单元悬挂参数的优化 [J].中国铁道科学,2004(2):62-66.LUO Y,CHEN K,JIN D C.Optimization of suspension parameters of brake-unit driven by 270 km·h-1 power unit [J].China Railway Science,2004(2):62-66.(in Chinese)

    • [14] 罗赟,罗世辉,金鼎昌.架悬机车驱动装置悬挂参数及结构的研究 [J].中国铁道科学,2005,26(5):57-61.LUO Y,LUO S H,JIN D C.Research on driving equipment suspension parameters and the structures of locomotives with motor elastically mounted on the frame [J].China Railway Science,2005,26(5):57-61.(in Chinese)

    • [15] 姚远,张开林,张红军,等.机车驱动系统弹性架悬的机理与应用研究 [J].铁道学报,2013,35(4)∶23-29.YAO Y,ZHANG K L,ZHANG H J,et al.Mechanism of drive system elastic suspension and its application [J].Journal of the China Railway Society,2013,35(4):23-29.(in Chinese)

    • [16] 姚远,张开林,罗世辉,等.驱动系统弹性架悬对机车动力学性能影响机理 [J].振动工程学报,2012,25(5)∶481-487.YAO Y,ZHANG K L,LUO S H,et al.The mechanism of dynamic effect of the driving system elastically mounted on the bogie frame of locomotive [J].Journal of Vibration Engineering,2012,25(5):481-487.(in Chinese)

    • [17] 黄彩虹,梁树林,曾京,等.牵引电机架悬参数对动车转向架稳定性的影响 [J].铁道车辆,2014,52(11):1-5+45.HUANG C H,LIANG S L,ZENG J,et al.Effect of the suspension parameter of traction motors on the stability of motor car bogies [J].Rolling Stock,2014,52(11):1-5+45(in Chinese)

    • [18] 徐坤,曾京,黄彩虹,等.高速动车电机架悬参数对转向架动力学性能影响研究 [J].振动与冲击,2018,37(20)∶95-100+108.XU K,ZENG J,HUANG C H,et al.The influence of motor elastic bogie-suspended parameters of high-speed vehicles on the dynamic performance of bogies [J].Journal of Vibration and Shock,2018,37(20):95-100+108.(in Chinese)

    • [19] 姚远,宋亚东,李广,等.高速列车转向架的主动稳定性研究 [J].动力学与控制学报,2020,18(3)∶31-37.YAO Y,SONG Y D,LI G,et al.Research on active stability of high-speed train bogies [J].Journal of Dynamics and Control,2020,18(3):31-37.(in Chinese)

    • [20] CHEN Z G,ZHAI W M,WANG K Y.A locomotive-track coupled vertical dynamics model with gear transmissions [J].Vehicle System Dynamics,2017,55(2):244-267.

    • [21] ZHANG T,CHEN Z G,ZHAI W M,et al.Establishment and validation of a locomotive-track coupled spatial dynamics model considering dynamic effect of gear transmissions [J].Mechanical Systems and Signal Processing,2019,119:328-345.

    • [22] HUANG G H,ZHOU N,ZHANG W H.Effect of internal dynamic excitation of the traction system on the dynamic behavior of a high-speed train [J].Journal of Rail and Rapid Transit,2016,230(8):1899-1907.

    • [23] WANG Z W,YIN Z H,ALLEN P,et al.Dynamic analysis of enhanced gear transmissions in the vehicle-track coupled dynamic system of a high-speed train [J].Vehicle System Dynamics,2022,60(8):2716-2738.

    • [24] WANG Z W,YIN Z H,WANG R C,et al.Coupled dynamic behaviour of a transmission system with gear eccentricities for a high-speed train [J].Vehicle System Dynamics,2021,59(4):613-634.

    • [25] 肖乾,程玉琦,许旭.轨道不平顺影响下高速列车齿轮传动系统的振动特性分析 [J].机械传动,2021,45(4)∶135-141.XIAO Q,CHENG Y Q,XU X.Vibration characteristic analysis of high-speed train gear transmission system under track irregularity [J].Journal of Mechanical Transmission,2021,45(4):135-141.(in Chinese)

    • [26] 寻麒儒,魏静,吴昊,等.曲线通过参数对高速列车牵引齿轮传动系统动力学响应影响研究 [J].振动与冲击,2022,41(13)∶283-293.XUN Q R,WEI J,WU H,et al.Effects of curve passing parameters on dynamic response of traction gear transmission system of high-speed train [J].Journal of Vibration and Shock,2022,41(13):283-293.(in Chinese)

    • [27] 任辉,周平.多体系统动力学的常用积分器算法 [J].动力学与控制学报,2021,19(1)∶1-28.REN H,ZHOU P.Implementation details of DAE integrators for multibody system dynamics [J].Journal of Dynamics and Control,2021,19(1):1-28.(in Chinese)

    • [28] DIN 3990-1-1987,Calculation of load capacity of cylindrical gears:Introduction and general influence factors [S].Berlin:German Institute for Standardisation,1987.

    • [29] 机车车辆动力学性能评定及试验鉴定规范:GB/T 5599-2019[S].北京∶中国标准出版社,2019.Specification for dynamic performance assessment and testing verification of rolling stock:GB/T 5599-2019 [S].Beijing:Standard Press of China,2019.(in Chinese)

  • 参考文献

    • [1] 杨绍普,刘永强.轨道车辆动力学与控制研究进展 [J].动力学与控制学报,2020,18(3)∶1-4.YANG S P,LIU Y Q.Development of railway vehicle dynamics and control [J].Journal of Dynamics and Control,2020,18(3):1-4.(in Chinese)

    • [2] 缪炳荣,张卫华,池茂儒,等.下一代高速列车关键技术特征分析及展望 [J].铁道学报,2019,41(3)∶58-70.MIAO B R,ZHANG W H,CHI M R,et al.Analysis and prospects of key technical features of next generation high speed trains [J].Journal of the China Railway Society,2019,41(3):58-70.(in Chinese)

    • [3] 贾洪龙,尹振坤,梁云,等.轨道车辆轴箱内置式转向架技术发展研究 [J].城市轨道交通研究,2021,24(9)∶59-63.JIA H L,YIN Z K,LIANG Y,et al.Research on development of railway vehicle axle box in-board bogie technology [J].Urban Mass Transit,2021,24(9):59-63.(in Chinese)

    • [4] 张隶新.轴箱内置和外置高速转向架的动力学性能对比 [J].铁道科学与工程学报,2021,18(3)∶581-587.ZHANG L X.Dynamics analysis of high-speed railway bogies with inner bearing and outer bearing suspensions [J].Journal of Railway Science and Engineering,2021,18(3):581-587.(in Chinese)

    • [5] 刘承聪.160 km/h市域车辆内轴箱非动力转向架设计及动力学性能研究[D].成都∶西南交通大学,2020.LIU C C.Research on design and dynamic performance of non-powered inner axle box bogie for 160km/h suburban vehicle[D].Chengdu:Southwest Jiaotong University,2020.(in Chinese)

    • [6] WU B W,CHEN G X,LV J Z,et al.Effect of the axlebox arrangement of the bogie and the primary suspension parameters on the rail corrugation at the sharp curve metro track [J].Wear,2019,(426-427):1828-1836.

    • [7] 陈再刚,刘禹清,周子伟,等.轨道交通牵引动力传动系统动力学研究综述 [J].交通运输工程学报,2021,21(6)∶31-49.CHEN Z G,LIU Y Q,ZHOU Z W,et al.Summary of dynamics research on traction power transmission system of rail transits [J].Journal of Traffic and Transportation Engineering,2021,21(6):31-49.(in Chinese)

    • [8] LATA M.The modern wheelset drive system and possibilities of modelling the torsion dynamics [J].Transport,2008,23(2):172-181.

    • [9] ALFI S,MAZZOLA L,BRUNI S.Effect of motor connection on the critical speed of high-speed railway vehicles [J].Vehicle System Dynamics,2008,46(1):201-214.

    • [10] 金鼎昌,罗赟,黄志辉.牵引电动机悬挂方式对机车或动车动力学性能的影响 [J].铁道学报,1994(S1):43-47.JIN D C,LUO Y,HUANG Z H.The effect of the driving motor’s suspension type on the rail way vehicle dynamics [J].Journal of the China Railway Society,1994(S1):43-47.(in Chinese)

    • [11] 张红军,陈喜红,孙永鹏,等.我国200 km/h速度等级高速客运机车转向架平台设计分析 [J].铁道学报,2007,29(4)∶101-106.ZHANG H J,CHEN X H,SUN Y P,et al.The analysis of bogie platform of 200 km/h high-speed passenger locomotive in our country [J].Journal of the China Railway Society,2007,29(4):101-106.(in Chinese)

    • [12] 罗赟,孙永鹏,张红军,等.架悬C0-C0轴式机车电机布置及悬挂的研究 [J].铁道学报,2006,28(6):41-45.LUO Y,SUN Y P,ZHANG H J,et al.Research on the motor arrangement and suspension of the six-axles locomotive with driving equipment mounted in the frame [J].Journal of the China Railway Society,2006,28(6):41-45.(in Chinese)

    • [13] 罗赟,陈康,金鼎昌.270km·h-1动力车驱动制动单元悬挂参数的优化 [J].中国铁道科学,2004(2):62-66.LUO Y,CHEN K,JIN D C.Optimization of suspension parameters of brake-unit driven by 270 km·h-1 power unit [J].China Railway Science,2004(2):62-66.(in Chinese)

    • [14] 罗赟,罗世辉,金鼎昌.架悬机车驱动装置悬挂参数及结构的研究 [J].中国铁道科学,2005,26(5):57-61.LUO Y,LUO S H,JIN D C.Research on driving equipment suspension parameters and the structures of locomotives with motor elastically mounted on the frame [J].China Railway Science,2005,26(5):57-61.(in Chinese)

    • [15] 姚远,张开林,张红军,等.机车驱动系统弹性架悬的机理与应用研究 [J].铁道学报,2013,35(4)∶23-29.YAO Y,ZHANG K L,ZHANG H J,et al.Mechanism of drive system elastic suspension and its application [J].Journal of the China Railway Society,2013,35(4):23-29.(in Chinese)

    • [16] 姚远,张开林,罗世辉,等.驱动系统弹性架悬对机车动力学性能影响机理 [J].振动工程学报,2012,25(5)∶481-487.YAO Y,ZHANG K L,LUO S H,et al.The mechanism of dynamic effect of the driving system elastically mounted on the bogie frame of locomotive [J].Journal of Vibration Engineering,2012,25(5):481-487.(in Chinese)

    • [17] 黄彩虹,梁树林,曾京,等.牵引电机架悬参数对动车转向架稳定性的影响 [J].铁道车辆,2014,52(11):1-5+45.HUANG C H,LIANG S L,ZENG J,et al.Effect of the suspension parameter of traction motors on the stability of motor car bogies [J].Rolling Stock,2014,52(11):1-5+45(in Chinese)

    • [18] 徐坤,曾京,黄彩虹,等.高速动车电机架悬参数对转向架动力学性能影响研究 [J].振动与冲击,2018,37(20)∶95-100+108.XU K,ZENG J,HUANG C H,et al.The influence of motor elastic bogie-suspended parameters of high-speed vehicles on the dynamic performance of bogies [J].Journal of Vibration and Shock,2018,37(20):95-100+108.(in Chinese)

    • [19] 姚远,宋亚东,李广,等.高速列车转向架的主动稳定性研究 [J].动力学与控制学报,2020,18(3)∶31-37.YAO Y,SONG Y D,LI G,et al.Research on active stability of high-speed train bogies [J].Journal of Dynamics and Control,2020,18(3):31-37.(in Chinese)

    • [20] CHEN Z G,ZHAI W M,WANG K Y.A locomotive-track coupled vertical dynamics model with gear transmissions [J].Vehicle System Dynamics,2017,55(2):244-267.

    • [21] ZHANG T,CHEN Z G,ZHAI W M,et al.Establishment and validation of a locomotive-track coupled spatial dynamics model considering dynamic effect of gear transmissions [J].Mechanical Systems and Signal Processing,2019,119:328-345.

    • [22] HUANG G H,ZHOU N,ZHANG W H.Effect of internal dynamic excitation of the traction system on the dynamic behavior of a high-speed train [J].Journal of Rail and Rapid Transit,2016,230(8):1899-1907.

    • [23] WANG Z W,YIN Z H,ALLEN P,et al.Dynamic analysis of enhanced gear transmissions in the vehicle-track coupled dynamic system of a high-speed train [J].Vehicle System Dynamics,2022,60(8):2716-2738.

    • [24] WANG Z W,YIN Z H,WANG R C,et al.Coupled dynamic behaviour of a transmission system with gear eccentricities for a high-speed train [J].Vehicle System Dynamics,2021,59(4):613-634.

    • [25] 肖乾,程玉琦,许旭.轨道不平顺影响下高速列车齿轮传动系统的振动特性分析 [J].机械传动,2021,45(4)∶135-141.XIAO Q,CHENG Y Q,XU X.Vibration characteristic analysis of high-speed train gear transmission system under track irregularity [J].Journal of Mechanical Transmission,2021,45(4):135-141.(in Chinese)

    • [26] 寻麒儒,魏静,吴昊,等.曲线通过参数对高速列车牵引齿轮传动系统动力学响应影响研究 [J].振动与冲击,2022,41(13)∶283-293.XUN Q R,WEI J,WU H,et al.Effects of curve passing parameters on dynamic response of traction gear transmission system of high-speed train [J].Journal of Vibration and Shock,2022,41(13):283-293.(in Chinese)

    • [27] 任辉,周平.多体系统动力学的常用积分器算法 [J].动力学与控制学报,2021,19(1)∶1-28.REN H,ZHOU P.Implementation details of DAE integrators for multibody system dynamics [J].Journal of Dynamics and Control,2021,19(1):1-28.(in Chinese)

    • [28] DIN 3990-1-1987,Calculation of load capacity of cylindrical gears:Introduction and general influence factors [S].Berlin:German Institute for Standardisation,1987.

    • [29] 机车车辆动力学性能评定及试验鉴定规范:GB/T 5599-2019[S].北京∶中国标准出版社,2019.Specification for dynamic performance assessment and testing verification of rolling stock:GB/T 5599-2019 [S].Beijing:Standard Press of China,2019.(in Chinese)

  • 微信公众号二维码

    手机版网站二维码