en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

王荣浩,E-mail:wrh@893.com.cn

中图分类号:TP29

文献标识码:A

文章编号:1672-6553-2023-21(1)-018-012

DOI:10.6052/1672-6553-2021-078

参考文献 1
王成山,李鹏.分布式发电、微网与智能配电网的发展与挑战 [J].电力系统自动化,2010,34(2):10-14,23.WANG C S,LI P.Development and challenges of distributed generation,the micro-grid and smart distribution system [J].Automation of Electric Power Systems,2010,34(2):10-14,23.(in Chinese)
参考文献 2
张昊.微电网技术的应用现状和前景分析 [J].中国高新科技,2019(13):101-104.ZHANG H.Application status and prospect analysis of microgrid technology [J].China High-Tech,2019(13):101-104.(in Chinese)
参考文献 3
DAN W,DRAGICEVIC T,VASQUEZ J C,et al.Secondary coordinated control of islanded microgrids based on consensus algorithms [C]//2014 IEEE Energy Conversion Congress and Exposition(ECCE).IEEE,2014.
参考文献 4
郑漳华,艾芊.微电网的研究现状及在我国的应用前景 [J].电网技术,2008(16):27-31,58.ZHENG Z H,AI Q.Present situation of research on microgrid and its application prospects in China [J].Power System Technology,2008(16):27-31,58.(in Chinese)
参考文献 5
王燕廷.微电网并网与孤岛运行模式切换的研究[D].吉林:东北电力大学,2011.WANG Y T.Study on the switching of micro-grid grid-connected and autonomous modes[D].Jilin:Northeast Electric Power University,2011.(in Chinese)
参考文献 6
杨新法,苏剑,吕志鹏,等.微电网技术综述 [J].中国电机工程学报,2014,34(1):57-70.YANG X F,SU J,LV Z P,et al.Overview on micro-grid technology [J].Chinese Journal of Electrical Engineering,2014,34(1):57-70.(in Chinese)
参考文献 7
顾伟,楼冠男,柳伟,等.微电网分布式控制理论与方法 [M].北京:科学出版社,2019.GU W,LOU G N,LIU W,et al.Distributed control theory and method of microgrid [M].Beijin:Science Press,2019.(in Chinese)
参考文献 8
ZHU W,RUI Y,WANG L.Intelligent multi-agent control for integrated building and micro-grid systems [C]//Innovative Smart Grid Technologies(ISGT),2011 IEEE PES.IEEE,2011.
参考文献 9
陈杰,方浩,欣斌,等.多智能体系统的协同群集运动控制 [M].北京:科学出版社,2017.CHEN J,FANG H,XIN B,et al.Cooperative cluster motion control of multi-agent system [M].Beijin:Science Press,2017.(in Chinese)
参考文献 10
张秋花,薛惠锋,吴介军,等.多智能体系统MAS及其应用 [J].计算机仿真,2007,24(6):133-137.ZHANG Q H,XUE H F,WU J J,et al.Theory and application of the multi-agent system [J].Computer Simulation,2007,24(6):133-137.(in Chinese)
参考文献 11
吴丽珍,雷艾虎,郝晓弘.孤岛微电网电压和频率网络化分层控制 [J].控制工程,2019,26(1):162-169.WU L Z,LEI A H,HAO X H.Voltage and frequency networked hierarchical control for islanded microgrids [J].Control Engineering of China,2019,26(1):162-169.(in Chinese)
参考文献 12
SAVAGHEBI M.Secondary control scheme for voltage unbalance compensation in an islanded droop-controlled microgrid [J].IEEE Transactions on Smart Grid,2012,3(2):797-807.
参考文献 13
苗海东,王金梅,马文涛,等.一种改进的微电网无功分配控制策略研究 [J].电气传动,2021,51(1):51-55.MIAO H D,WANG J M,MA W T,et al.Research on an improved control strategy of reactive power distribution in microgrids [J].Electric Drive,2021,51(1):51-55.(in Chinese)
参考文献 14
颜湘武,王月茹,王星海.逆变器并联功率解耦及鲁棒下垂控制方法研究 [J].电力科学与技术学报,2016,31(1):11-16.YAN X W,WANG Y R,WANG X H.Study on power decoupling and robust droop control method of parallel inverter [J].Journal of Electric Power Science and Technology,2016,31(1):11-16.(in Chinese)
参考文献 15
张德斌,朱纯领,杨高孟.基于下垂控制并网逆变器改进控制策略的研究 [J].电力电子技术,2015,49(3):40-42.ZHANG D B,ZHU C L,YANG G M.Research on an improved control strategy of inverter based on the droop control [J].Power Electronics,2015,49(3):40-42.(in Chinese)
参考文献 16
MA X P,YANG P L,DONG H Y,et al.Secondary control strategy of islanded micro-grid based on multi-agent consistency [C]//2017 IEEE Conference on Energy Internet and Energy System Integration(EI2).IEEE,2017.
参考文献 17
XU Y L,SUN H B,GU W,et al.Optimal distributed control for secondary frequency and voltage regulation in an islanded microgrid [J].IEEE Transactions on Industrial Informatics,2018:225-235.
参考文献 18
SAHOO A K,MAHMUD K,CRITTENDEN M,et al.Communication-less primary and secondary control in inverter-interfaced AC microgrid:an overview [J].IEEE Journal of Emerging and Selected Topics in Power Electronics,2021,9(5):5164-5182.
参考文献 19
肖湘宁,王鹏,陈萌.基于分布式多代理系统的孤岛微电网二次电压控制策略 [J].电工技术学报,2018,33(8):1894-1902.XIAO X N,WANG P,CHEN M.Secondary voltage control in an islanded microgrid based on distributed multi-agent system [J].Transactions of China Electrotechnical Society,2018,33(8):1894-1902.(in Chinese)
参考文献 20
周烨,汪可友,李国杰,等.基于多智能体一致性算法的微电网分布式分层控制策略 [J].电力系统自动化,2017,41(11):142-149.ZHOU Y,WANG K Y,LI G J,et al.Distributed hierarchical control for microgrid based on multi-agent consensus algorithm [J].Automation of Electric Power Systems,2017,41(11):142-149.(in Chinese)
参考文献 21
YAZDANIAN M,MEHRIZI-SANI A.Distributed control techniques in microgrids [J].IEEE Transactions on Smart Grid,2014,5(6):2901-2909.
参考文献 22
SIMPSON-PORCO J W,SHAFI E Q,DORFLER F,et al.Secondary frequency and voltage control of islanded microgrids via distributed averaging [J].IEEE Transactions on Industrial Electronics,2015,62(11):7025-7038.
参考文献 23
唐骥宇.多智能体系统一致性问题研究[D].西安:长安大学,2014.TANG J Y.Consensus problem in multi-agent systems[D].Xi′an:Chang'an University,2014.(in Chinese)
参考文献 24
CHEN L J,WANG Y Y,ZHENG T W,et al.Consensus-based distributed control with communication time delays for virtual synchronous generators in isolate microgrid [C]//The 9th Asia-Pacific Power and Energy Engineering Conference(APPEEC 2017),Chengdu,2017-04-15.
参考文献 25
王荣浩,邢建春,王平,等.地面无人系统的多智能体协同控制研究综述 [J].动力学与控制学报,2016,14(2):97-108.WANG R H,XING J C,WANG P.An overview on multi-agents cooperative control of unmanned ground system [J].Journal of dynamics and control,2016,14(2):97-108.(in Chinese)
参考文献 26
OLFATI-SABER R,MURRAY R M.Consensus problems in networks of agents with switching topology and time-delays [J].IEEE Transactions on Automatic Control,2004,49(9):1520-1533.
参考文献 27
WANG L,XIAO F.Finite-time consensus problems for networks of dynamic agents [J].IEEE Transactions on Automatic Control,2010,55(4):950-955.
参考文献 28
BAI S T.Secondary control of island microgrid based on distributed multi-agent system under symmetric time delay [C].IOP Conference Series Materials Science and Engineering,2020,853(1):012007.
参考文献 29
苏晨,吴在军,窦晓波.孤岛微电网分布式P-V协调控制策略 [J].电力自动化设备,2021,41(4):101-108.SU C,WU Z J,DOU X B.Distributed P-V coordinated control strategy for islanded microgrid [J].Electric Power Automation Equipment,2021,41(4):101-108.(in Chinese)
参考文献 30
王晓兰,曲利民,张晓英,等.基于一致性算法的孤岛微电网协同控制 [J].兰州理工大学学报,2016,42(5):77-83.WANG X L,QU L M,ZHANG X Y,et al.Cooperative control of islanded microgrids based on consensus algorithm [J].Journal of Lanzhou University of Technology,2016,42(5):77-83.(in Chinese)
参考文献 31
王海晴.孤岛微电网的二级电压控制研究[D].吉林:东北电力大学,2020.WANG H Q,Research on secondary voltage control of islanded microgrid [D].Jilin:Northeast Electric Power University,2020.(in Chinese)
参考文献 32
万晓凤,涂慧朋,丁小华,等.基于多智能体一致性的孤岛微网协调二次控制 [J].电气传动,2020,50(8):87-92.WAN X F,TU H P,DING X H,et al.Cooperative secondary control in an islanded microgrid based on multi-agent consistency protocol [J].Electric Drive,2020,50(8):87-92.(in Chinese)
参考文献 33
DOU C X,ZHANG B,YUE D,et al.A novel hierarchical control strategy combined with sliding mode control and consensus control for islanded micro-grid [J].IET Renewable Power Generation,2018,12(9):1012-1024.
参考文献 34
邓思成,陈来军,郑天文,等.考虑系统延时的微电网有功功率分布式控制策略 [J].电网技术,2019,43(5):1536-1542.DENG S C,CHEN L J,ZHENG T W,et al.Active power distributed control of microgrids considering system time delays [J].Power System Technology,2019,43(5):1536-1542.(in Chinese)
参考文献 35
许德明,李泽,郝万君.孤岛微电网系统电压和频率稳定控制研究综述 [J].电子世界,2019(22):11-13,17.XU D M,LI Z,HAO W J.Overview on voltage and frequency stability control of island microgrid system [J].Electronic World,2019(22):11-13,17.(in Chinese)
参考文献 36
佘莹莹.多智能体系统一致性若干问题的研究[D].武汉:华中科技大学,2010.SHE Y Y.Research on several problems of consensus in multi-agent system[D].Wuhan:Huazhong University of science and technology,2010.(in Chinese)
参考文献 37
唐彬峰.基于多智能体有限时间一致性的微电网优化策略研究[D].兰州:兰州交通大学,2020.TANG B F.Research on optimization strategy for microgrid based on finite-time consensus of multi-agent[D].Lanzhou:Lanzhou Jiaotong University,2020.(in Chinese)
参考文献 38
涂慧朋.基于多智能体的孤岛微电网控制研究[D].南昌:南昌大学,2020.TU H P.Research on island microgrid control based on multi-agent[D].Nanchang:Nanchang University,2020.(in Chinese)
参考文献 39
王满商,邓思成,郑天文,等.非理想通信条件下微电网分布式有功功率控制 [J].电网技术,2021,45(2):680-688.WANG M S,DENG S C,ZHENG T W,et al.Distributed active power control of microgrids under non-ideal communication [J].Power System Technology,2021,45(2):680-688.(in Chinese)
参考文献 40
杨秋霞,袁冬梅,郭小强,等.CPS概念下基于事件触发且考虑通信丢包及扰动的微网分层控制策略 [J].电工技术学报,2019,34(15):3209-3221.YANG Q X,YUAN D M,GUO X Q,et al.An event-triggered hierarchical control strategy based on concept of CPS for micro-grid considering with packet loss and communication disturbance [J].Transactions of China Electrotechnical Society,2019,34(15):3209-3221.(in Chinese)
参考文献 41
张善路,李磊,陈鹏威,等.多智能体系统在微电网中的应用 [J].南京理工大学学报,2021,45(2):127-141.ZHANG S L,LI L,CHEN P W,et al.Application of multi-agent system in microgrid [J].Journal of Nanjing University of Science and Technology,2021,45(2):127-141.(in Chinese)
参考文献 42
柴洁,过榴晓,陈晶,等.二阶多智能体系统的线性广义一致性 [J].动力学与控制学报,2021,19(1):80-86.CAI J,GUO L X,CHEN J,et al.Linear generalized consensus of second-order multi-agent systems [J].Journal of Dynamics and Control,2021,19(1):80-86.(in Chinese)
参考文献 43
蔡鹏程,文传博.基于比率一致性算法的孤岛微电网分布式二次频率控制 [J].太阳能学报,2020,41(10):74-81.CAI P C,WEN C B.Secondary frequency control of islanded microgrids based on ratio consensus algorithm [J].Acta Energiae Solaris Sinica,2020,41(10):74-81.(in Chinese)
参考文献 44
柏少童.基于分布一致性算法的孤岛微电网二次控制[D].南京:南京邮电大学,2020.BAI S T.Secondary control of island microgrid based on distributed consistency algorithm[D].Nanjing:Nanjing University of Posts and Telecommunications,2020.(in Chinese)
参考文献 45
ÅSTRÖM K J.Event based control [J].Analysis & Design of Nonlinear Control Systems,2008:127-147.
参考文献 46
李富强,豆根生,郑宝周.基于事件触发机制的多智能体网络平均一致性研究 [J].计算机应用研究,2017,34(3):665-670.LI F Q,DOU G S,ZHENG B Z.Study on average consistency of multi-agent networks based on event-triggered mechanism [J].Application Research of Computers,2017,34(3):665-670.(in Chinese)
参考文献 47
张健,周建萍,茅大钧,等.基于事件触发的孤岛微电网二次协调控制策略 [J].浙江电力,2021,40(4):1-9.ZHANG J,ZHOU J P,MAO D J,et al.Secondary coordinated control strategy of islanded microgrid based on event trigger [J].Zhejiang Electric Power,2021,40(4):1-9.(in Chinese)
目录contents

    摘要

    当前孤岛微电网常采用分层控制结构实现系统的稳定、可靠、经济运行,其中第一层采用下垂控制.由于下垂控制会导致电压和频率偏离给定值,无法实现无功功率的合理分配,很多学者提出将多智能体一致性算法引入孤岛微电网的二次控制中,通过与相邻分布式电源的稀疏通信,可以有效解决集中控制所带来的通信网络结构复杂,计算难度大的问题.本文介绍了孤岛微电网的分层控制结构,搭建了下垂控制仿真模型,对多智能体一致性算法在孤岛微电网二次控制中的应用进行了详细阐述.分析孤岛微电网运行中的实际问题,介绍了孤岛微电网二次控制中基于多智能体的一致性算法在收敛速度、抗干扰控制、通信延迟以及事件触发控制四个方面的改进,并归纳了多智能体技术在孤岛微电网二次控制中的发展方向.

    Abstract

    At present, island microgrid often adopts a hierarchical control structure to realize the stable, reliable and economic operation of systems, in which the first layer commonly uses a droop control. The droop control will lead to deviation of voltage and frequency from the given value, and reasonable distribution of reactive power cannot be realized, Therefore, many scholars have proposed to introduce the multi-agent consistency algorithm into the secondary control of island microgrid. Through sparse communication with adjacent distributed generators, the problems of complex communication network structure and difficult calculation caused by centralized control can be effectively solved. This paper introduces the hierarchical control structure of island microgrid and expounds in detail application of multi-agent consistency algorithm in the secondary control of island microgrid. Combined with practical problems in the operation of island microgrid, improvement of multi-agent consistency algorithm is introduced for the secondary control of island microgrid regarding convergence speed, anti-interference control, communication delay and event triggering control, with also development direction of multi-agent technology in secondary control of island microgrid being summarized.

  • 引言

  • 微电网是整合多种分布式电源(Distributed Generator,DG)发电的有效方式,能够缓解能源匮乏、环境污染问题,实现高山、海岛偏远地区供电,因此受到国内外学者的广泛关注[1].一方面微电网中DG种类多样,包括风、光、柴、储等,各类DG工作原理、工作模式差异大,其中风能、光能等清洁型分布式能源本身存在随机、多变等特性[2]; 另一方面微电网打破了传统电网的集中发电模式,改变了网内能量的单向流动方式,其渗透对传统电网具有一定的冲击,因此实现微电网的可靠控制是保证其正常运行、安全接入大电网的前提.为控制网内电源与负载间功率的均衡,实现输出电压和频率的精确跟踪,不少学者将多智能体技术引入微电网,把每个DG看作一个多智能体,将复杂的大系统分解为多个小系统,建立合理的通信拓扑结构,通过稀疏通信实现全局控制[3].

  • 微电网是一种可以实现自主控制和能量管理的小型发配电系统,由分布式电源、储能装置、能量转换装置、负荷、监控和保护装置等组合而成[4],其结构如图1所示.

  • 图1 微电网结构图

  • Fig.1 Structure of microgrid

  • 图2 逆变器控制系统结构图

  • Fig.2 Structure diagram of inverter control system

  • 微电网通过公共连接点(Point Common Connect,PCC)与主电网连接.当PCC接通时,工作在并网模式,既可以做负载从电网中吸收能量,也可以作为电源给电网输送能量; 当PCC断开时,工作在孤岛模式,可以独立地给负载供电,平衡网内的有功、无功功率,控制电网稳定可靠运行[5].孤岛微电网的电压和频率不能够依靠大电网,因此其控制更加复杂,需要考虑的因素更多.

  • 微电网中DG大多通过电力电子变换装置并入电网,电力电子变换装置可以分为四类,包括斩波器、逆变器、整流器以及交-交变换器,在实际应用中,根据母线以及DG的电能形式进行选取[6].对于太阳能、储能等直流电源常采用逆变器进行电能的变换,控制结构如图2所示.当前对逆变器有三种控制策略,分别为:恒压恒频控制(V/f控制)、恒功率控制(PQ控制)、下垂控制(Droop控制),其中下垂控制模拟同步发电机特性,可以快速实现电压和电流的稳定,利于“即插即用”,但受其控制特性影响,需要通过二次控制对电压和频率进行消差,并实现功率的合理分配[7].

  • 孤岛微电网含有多个DGs,其结构与多智能体系统相契合,将多智能体一致性策略应用于微电网的二次和三级控制是近年来微电网分布式控制领域的研究热点[8].多智能体系统是指由多个智能体及其相应的组织规则和信息交互协议构成的能够完成特定任务的一类复杂系统[9],如今已被广泛应用于无人机群、无人车队的协同控制以及智能交通、智能电网的控制与调度等多个领域[10].实际应用中,面对微电网拓扑结构复杂、运行环境多样、源荷形式差异大等挑战,多智能体控制策略的使用需考虑通信延迟、收敛速度、抗扰性能等问题,即需要结合微电网实际情况对一致性控制策略进行改进.

  • 本文首先介绍了孤岛微电网的三层控制结构,对各层功能及控制方法进行了阐述,搭建了下垂控制模型; 然后讨论了多智能体一致性算法及其在孤岛微电网二次控制中的应用,并进一步提出了孤岛微电网二次控制中基于多智能体的一致性算法在收敛速度、通信延迟、抗干扰控制以及事件触发控制四个方面的改进; 最后总结了当前孤岛微电网二次控制面临的主要问题,为下一步研究提供思路.

  • 1 孤岛微电网的分层控制结构

  • 孤岛微电网的使用环境差异大、网络结构复杂、控制目标多样,要确保微电网源荷平衡,必须建立准确的控制模型.当前,根据系统的稳定运行机制以及DG发挥的作用,控制模式主要分为:主从控制、对等控制,两种控制模式的比较情况如表1所示[11].

  • 表1 两种控制模式的比较情况

  • Table1 Comparison of three control modes

  • 图3 下垂控制仿真图

  • Fig.3 Droop control simulation diagram

  • 针对对等控制模式中下垂控制、VSG控制无法实现孤岛微电网的电压、频率的无差调节,不能把握全局信息等问题,学者们提出了微电网分层控制结构并进行了研究.在微电网分层控制中,每层有各自的任务,下层DG将本地信息实时传递给上层,为上层控制策略提供判断依据,同时上层将控制信息传递给下层.目前,比较成熟的孤岛微电网分层控制方案主要包括三层,分别为:初级控制、二次控制和三级控制.

  • 1.1 初级控制

  • 初级控制主要由DG执行,一般采取下垂控制,可以快速地控制电压和频率使其保持稳定[12].下垂控制方程如下:

  • fi=fi*-miPiUi=Ui*-niQi
    (1)
  • 其中,fiUi分别为第i台DG输出的频率和电压,fi*Ui*为参考值,mini为下垂系数,PiQi分别为DG输出的实时有功功率、无功功率.以两台DGs组成的微电网系统为例,利用MATLAB/Simulink平台搭建孤岛微电网下垂控制系统的仿真模型,如图3所示.在忽略线路阻抗情况下,验证下垂控制能够自主调节电压和频率,并且完成功率分配.

  • 下垂控制两台DGs的仿真参数如表2所示,所带负载额定电压311V,额定频率50Hz,有功功率30kW.

  • 表2 下垂控制DGs仿真参数

  • Table2 Droop control DGs simulation parameters

  • 图4为输出母线的电压和频率信号,可以看出输出电压和频率基本保持稳定,但由于下垂控制特性,电压和频率均与给定值存在偏差,可以采用分层控制模型,在二次控制中消除偏差; 图5为两台DGs输出功率,DG1、DG2的额定功率均为40kW,经过下垂控制后两台DGs有功功率、无功功率基本稳定,并且DG1有功功率输出与DG2相等,两台DGs输出无功功率之和为0,即两台DGs根据自身容量实现了功率的自主分配.实验验证了下垂控制能够实现电压、频率稳定并可以自主完成功率分配,为二次控制以及三级控制模型的搭建提供了基础.

  • 图4 输出电压和频率

  • Fig.4 Output voltage and frequency

  • 图5 DG输出功率

  • Fig.5 DG output power

  • 上述的下垂控制在分析过程中将线路阻抗视为感性阻抗,实际应用中孤岛微电网的线路阻抗多为阻感特性,这样的近似会造成功率耦合问题,不能实现功率均分[13].解决这一问题有以下几种方法:解耦控制、虚拟阻抗控制和二次调节控制.文献[14]中提出了解耦控制,但其计算过程较为复杂,需准确地知道线路阻抗比,实际运行中阻抗比随着环境温度、湿度等因素不断变化,很难精准测得,因此其应用受到限制; 文献[15]采用虚拟阻抗控制,引入虚拟电阻或者电抗进行补偿,使线路呈现为纯阻性或感性,这种方法对系统输出电压影响较大,难以满足发电容量较小的微电网稳定性要求.相较而言,采用二次调节控制有利于实现目标.

  • 下垂控制中各DG主要通过逆变器实现并网,但逆变器缺少惯性和阻尼,因此电力系统容易受到系统故障的影响,对此提出了虚拟同步机(Virtual Synchronization Generator,VSG)的方法,模拟同步发电机的调速器和励磁调节器的功能,提高电力系统的稳定性.文献[16]提出的分层控制结构中初级控制利用VSG方法提升了系统的惯性,并在二次控制中使用多智能体一致性控制实现电压和频率的消差.

  • 1.2 二次控制

  • 二次控制用于消除由下垂控制带来的偏差,确保电压、频率维持在额定值,并且可以合理地进行有功功率、无功功率分配,提高电能质量[17].依据DGs间信息交互的密集程度,二次控制一般分为三类:集中式控制、分散式控制、分布式控制.集中式控制依赖于中央控制器(Microgrid Central Controller,MGCC),这种控制实现较为简单,但是其对通信带宽需求大、计算成本较高、新增DG难,因此适用于规模小、含DGs少的微电网,当前实际应用中较为常见[18]; 分散式控制利用本地信息进行决策,系统动态响应快,可以实现“即插即用”,但是其仅利用局部信息进行决策,无法实现全局目标,由于其稳定性较差,抗干扰性能不好,适用范围受限,当前研究较少; 分布式控制利用稀疏通信避免了集中式控制和分散式控制的弊端,可以实现全局性目标,具有可靠性好、可扩展性强的优势.

  • 当前多智能体技术正在快速发展,多智能体一致性控制策略已经被应用到孤岛微电网的二次控制中,这种策略的引入可以有效地消除孤岛微电网初级控制所带来的频率、电压偏差,节省通信带宽,解决了功率分配问题,文献[19]中引入了多智能体一致性控制策略,通过与分布式电源邻近的控制单元进行交互来调整状态,提高了系统的可靠性,避免对主控单元的依赖.

  • 1.3 三级控制

  • 三级控制可以根据控制目标实现微电网的最优控制,根据调度算法确定各台DG的最优发电功率的参考值,并通过通信网络传递给下层,从而控制各台DG输出功率,达到源荷平衡,实现孤岛微电网系统经济运行[20].微电网的三级控制又称为微电网能量管理,具有经济调度和有功功率、无功功率控制等功能.微电网能量管理的策略主要有专家系统和实时优化,当前,在微电网示范工程和试验系统研究中大多应用专家系统,这种方法基于运行策略集,是一种经验控制方法,它根据特定环境下具有特定结构的微电网而制定,不具备可扩展性; 实时优化是系统基于当前的运行状态,利用数学优化方法,不断向控制目标趋近的控制方法,然而各微电网结构多变、应用环境复杂、需求不同,因此找到一个通用的、易实施的解决策略是当前微电网亟须解决的难题.

  • 2 微电网二次控制中的一致性控制策略

  • 微电网二次控制决定了系统的供电质量,直接影响电力系统的安全、稳定、可靠运行.分布式控制方式具有较强的灵活性、适应性以及鲁棒性,有利于减轻微电网复杂度,具备“即插即用”功能,是实现微电网二次控制的理想控制方式[21].多智能体一致性控制是实现分布式控制的有效方法,如何结合微电网结构、特点发挥其应用效能具有重要研究意义,如图6所示为基于多智能体一致性控制策略的微电网二次控制结构示例.

  • 图6 基于多智能体一致性控制的微电网二次控制结构示例

  • Fig.6 Structure example of microgrid secondary control based on multi-agent consistency control

  • 图6中连接各个DG的实线表示物理连接,虚线表示通信连接,通信过程中传输DG的输出电压(V)、频率(f)、有功功率(P)及无功功率(Q)等信息.

  • 2.1 多智能体一致性控制算法

  • 多智能体一致性控制常采用图论的方法进行分析,用G={VεA}来表示图,其中V={v1v2,···,vn}表示节点集合,εV×V表示节点边的集合,A=(aij)表示边的权重矩阵,反映各节点间的相互影响程度.当节点ji相邻时,(vivj)∈ε,定义边(vivj)的权值aij取1,其余取0时,A为邻接矩阵[22].在无向图中,节点i的度定义为dii=j=1n aij=j=1n aji,定义D =diag{d11d22,···,dnn}为图的度矩阵,L =D-A为图的拉普拉斯矩阵[23].

  • 多智能体一致性算法的基本思想是每个智能体根据自身状态信息与邻居状态信息,通过合适的分布式控制算法,实现状态的一致或同步[24].其控制目标如式(2)所示,即所有智能体状态量均相等[25].

  • limt xj(t)-xi(t)=0,i,j1,2,,n
    (2)
  • 其中,n为系统中智能体的个数,xit)、xjt)分别为系统中第ij个智能体在t时刻的状态.多智能体一致性控制算法有多种方式,微电网中常用的有平均一致性控制、牵制一致性控制等,根据处理信号的不同又可以分为连续、离散的一致性控制算法.文献[26]中Olfati Saber提出了基于图论知识的连续一阶的平均一致性协议:

  • ui(t)=βi=1n aijxj-xi
    (3)
  • 式中,uit)是多智能体的控制输入变量,β>0为系统增益.该式也可以写为矩阵形式:

  • ui(t)=-Lx(t)
    (4)
  • 式中L为拉普拉斯矩阵.这种控制方式最终可以实现每一个状态量相等且达到初值的平均值.

  • 为了使系统实现有限时间一致性,Wang在文献[27]中提出了一种典型的有限时间一致性协议:

  • ui=βj=1n aijsignxj-xixj-xiα
    (5)
  • 其中,β >0,0<α<1,函数sign(·)定义如下:

  • sign(x)=1, x>00, x=0-1, x<0
    (6)
  • 文献[28]提出了一种牵制一致性协议,其控制输入为

  • ui(t)=ci=1n aijxi-xj-bixi-xref
    (7)
  • 其中,xref为参考状态,bi≥0表示该智能体是否与参考智能体相连,c为控制系数,采用这种控制方式可以实现输出状态相同且与给定状态量一致的目标.

  • 2.2 微电网二次控制中一致性算法

  • 微电网二次控制中,对微电网电压、频率以及有功功率、无功功率采用一致性算法,即可消除下垂控制带来的偏差,并实现功率均分[29].微电网二次控制一致性算法基本思路如图7所示.

  • 图7 微电网二次控制一致性算法基本思路

  • Fig.7 Basic idea of microgrid secondary control consistency algorithm

  • 针对微电网频率-有功功率二次控制,文献[30]采用了多智能体平均一致性控制策略:

  • ωi¯(t)=ωi¯(t)+0t jN aijωj(τ)-ωi(τ)dτ
    (8)
  • 通过这种方法,状态可以实现全局一致,且一致性状态为各DG频率初始状态的平均值,即

  • limt ωi¯(t)=1ni=1n ωi(t)
    (9)
  • 当采用此类平均一致性控制策略时要考虑到下垂控制为有差控制,平衡状态与期望值之间存在偏差,需进行补偿.当前进行补偿的方式很多,例如文献[31]中采用滑模控制去除平衡值与给定值间的偏差; 文献[32]中对各台逆变器补偿量取逆变器频率偏差和的平均值,其计算过程为:

  • Δf=1ni=1n fi-freq
    (10)
  • 为避免补差环节,文献[3334]提出采用式(7)的牵制一致性算法,设置虚拟DG领导者,为网内DGs提供参考,最终实现输出状态与虚拟DG领导者的一致.

  • 3 孤岛微电网二次控制中的改进一致性策略

  • 实际孤岛微电网中,多个DGs间不断地进行信息传递和交换,同时还需要进行大量数据的采集和控制指令的传送,因此传输环境并不理想,必须考虑微电网的控制目标和系统的实际运行情况,对传统的一致性算法进行改进,从而达到系统快速、安全、可靠运行的要求 [35].

  • 3.1 提高收敛速度

  • 收敛速度是评判孤岛微电网中多智能体一致性控制策略优劣的一个重要指标,对于无向图,L的特征值λ1λ2≤···≤λn,其中λ1=0,且λ2表示图的代数连通度,决定了一致性算法的收敛速度,因此通过调整λ2即可实现收敛速度的调整[36].部分学者考虑通过对一阶一致性控制算法进行改进提升系统收敛速度,文献[37]基于式(5)的典型有限时间一致性协议提出了一种快速有限时间一致性算法,并将其应用于孤岛微电网频率的二次控制中,且利用Lyapunov方法进行了稳定性验证,其协议表达式如下:

  • ui=μj=1n aijsignxj-xixj-xiα+ηj=1n aijxj-xi
    (11)
  • 由于相同条件下线性项的运算速度远快于非线性项,因此收敛速度较典型一致性算法有很大提升,且计算简单,易于实现; 另外,一些学者提出通过提高一致性算法的阶次提升系统收敛速度,例如文献[38]将多智能体的二阶一致性算法应用于频率和电压调节,通过对比发现这种方法的收敛速度较一阶有了较大提高,并验证了微电网系统的通信结构决定了拉普拉斯矩阵特征值的大小,进而影响其二次控制对象迭代至目标值的收敛速度.

  • 3.2 增强抗扰性能

  • 二次控制中,当数据传输受到较大的干扰或者存在丢包现象时系统无法做出正确的决策,会影响系统的稳定性和安全性,针对这一问题不少文献提出了解决方法.文献[39]利用状态观测器监测系统中的通信干扰,如图8所示为其孤岛微电网频率控制策略图,控制中用状态观测器得到的干扰估计值来抵消干扰中的恒定分量,并考虑通过控制增益系数c减轻系统干扰中交变分量的影响,这种方法有效消除了通信干扰,但状态观测器的引入增加了控制系统的复杂度.

  • 图8 孤岛微电网频率控制策略图

  • Fig.8 Frequency control strategy diagram of isolated island microgrid

  • 文献[40]对孤岛微电网采用了虚拟领导者-跟随一致性控制,首先对通信情况进行判断,当通信过程的丢包概率较大时系统采用预测补偿策略,根据预测的结果进行一致性控制,当系统受到较大的通信扰动时,采用滑模控制抑制扰动,这种控制方法结构简单,但其计算过程较为复杂.由于微电网的结构复杂,应用背景多样,影响正常运行的干扰因素不仅有通信干扰还有如负载突变、环境改变等因素带来的不可测干扰,这些干扰均不容忽视,因此需要进一步寻求有效解决方案.

  • 3.3 减小延时影响

  • 微电网中各DG距离较远,且线路带宽资源有限,各DG间信息交互造成的通信延时不容忽视.通信时延包括发送、传输以及信息处理产生的固定通信时延和随机时延,其中发送和处理时延由系统的软硬件性能决定,传输时延取决于网络带宽和传输距离[41].在上述通信时延的影响下,如何确保微电网运行的稳定性具有重要研究意义.文献[42]中通过有效控制协议,获得了多智能体系统在延时情况下实现广义一致的充要条件,并进行了证明.文献[43]中考虑到孤岛微电网中普遍存在信息传输延迟的情况,采用离散型一致性控制策略,如式(12)所示,并与忽略延迟的一致性控制进行对比,发现这种控制策略输出不存在误差,即控制性能更好.

  • ωi(k+1)=-aiiωi(k)+aijωik-τij,i1,2,,n
    (12)
  • 文献[44]中考虑了基于多智能体的微电网二次控制中节点信息传输及处理带来的时延,并通过分析得到孤岛微电网允许的最大时间延迟为:

  • τmax=π2λn
    (13)
  • 式中λn是多智能体网络拓扑结构图对应的L矩阵的最大特征值.含有时间延迟环节的分布式系统的一致性算法如下所示:

  • ω˙i(t)=-jN aijωit-τij-ωjt-τij,i1,2,n
    (14)
  • 式中的τij是节点i和节点j之间的进行信息交换所需的时间,这种延迟是指节点之间的传输所消耗的时间和节点器件处理信息所需定的时间,即是一种固定时延; 当节点之间的时延不固定时,多智能体系统最大延迟响应时间依然是式(13),这种情况为时变时滞一致性算法:

  • ω˙i(t)=-jN aijωit-τij(t)-ωjt-τij(t),i1,2,,n
    (15)
  • 与式(14)不同的是系统延迟时间不是一个固定的值,而是处于实时的变化中,两种情况的最大允许时间仍需满足条件.

  • 3.4 加入事件触发

  • 事件触发机制的概念最早由Astrom等提出[45],其通过对事件和触发响应进行更具体的设计,继而执行指定任务.其中事件一般是指期望状态与实际状态之间的偏差.依据其论述,事件触发机制可以在保证系统稳定运行的同时,有效地降低计算复杂度,达到节能的目的.

  • 孤岛微电网结构复杂,系统更新过于频繁,可能会出现对通信资源要求高,计算代价大等问题,考虑将事件触发机制应用于孤岛微电网多智能体一致性控制算法中[46].文献[47]提出,事件触发机制的设计需要满足以下两个方面要求:一致性稳定要求,即微电网的频率和电压稳定在额定值; 可行性要求,即需确保两次事件触发之间存在一定的时间间隔,排除出现Zeno现象即事件在有限时间内无限次触发.该文中定义频率误差信号:

  • εωi(t)=ωitiωi-ωi(t)
    (16)
  • 当‖εit)‖达到事件触发条件时,事件被触发,状态估计器的值等于实际值,误差信号更新为0,并利用Lyapunov稳定性理论设计事件触发函数.由于孤岛微电网控制系统复杂,很多文献考虑将事件触发机制与其他改进目标相结合,例如文献[40]中当系统通信丢包情况严重时,事件被触发,系统用预测数据来代替真实数据.文献[43]中当系统频率偏差大于参考值时,采用比率一致性算法并进行有功功率的调整.这种控制策略可以在实现系统目标的同时,节约通信资源,减轻计算压力.

  • 4 结论

  • 孤岛微电网网络结构复杂,控制目标多样,应用环境差别大,如何结合实际应用背景,将多智能体一致性算法应用于微电网二次控制还需进行深入研究,主要研究方向包含以下两个方面:

  • (1)当前有关于孤岛微电网分布式控制的研究大部分基于固定通信拓扑结构,并利用其拉式矩阵的特征值信息来反映各项指标.然而实际应用时,通信拓扑结构可能会受到各种影响,出现长时间或者短期的中断或者误连,例如DG的并入与切除、通信链路受到短时干扰而中断等均会导致通信拓扑结构的改变,这时系统的各项指标会随之发生变化,系统是否还能够保持稳定运行需要进一步研究.

  • (2)上文中提到的基于改进一致性算法的微电网二次控制大都只考虑单一因素,但在实际运行过程中会面临多种问题,例如当孤岛微电网中各DG安装距离较远,通信时间较长时,既需要考虑减小通信延时带来的影响,还需克服外界干扰.因此在进行改进时需根据实际情况,从多方面进行考虑,使算法更能满足实际系统的运行要求.

  • 参考文献

    • [1] 王成山,李鹏.分布式发电、微网与智能配电网的发展与挑战 [J].电力系统自动化,2010,34(2):10-14,23.WANG C S,LI P.Development and challenges of distributed generation,the micro-grid and smart distribution system [J].Automation of Electric Power Systems,2010,34(2):10-14,23.(in Chinese)

    • [2] 张昊.微电网技术的应用现状和前景分析 [J].中国高新科技,2019(13):101-104.ZHANG H.Application status and prospect analysis of microgrid technology [J].China High-Tech,2019(13):101-104.(in Chinese)

    • [3] DAN W,DRAGICEVIC T,VASQUEZ J C,et al.Secondary coordinated control of islanded microgrids based on consensus algorithms [C]//2014 IEEE Energy Conversion Congress and Exposition(ECCE).IEEE,2014.

    • [4] 郑漳华,艾芊.微电网的研究现状及在我国的应用前景 [J].电网技术,2008(16):27-31,58.ZHENG Z H,AI Q.Present situation of research on microgrid and its application prospects in China [J].Power System Technology,2008(16):27-31,58.(in Chinese)

    • [5] 王燕廷.微电网并网与孤岛运行模式切换的研究[D].吉林:东北电力大学,2011.WANG Y T.Study on the switching of micro-grid grid-connected and autonomous modes[D].Jilin:Northeast Electric Power University,2011.(in Chinese)

    • [6] 杨新法,苏剑,吕志鹏,等.微电网技术综述 [J].中国电机工程学报,2014,34(1):57-70.YANG X F,SU J,LV Z P,et al.Overview on micro-grid technology [J].Chinese Journal of Electrical Engineering,2014,34(1):57-70.(in Chinese)

    • [7] 顾伟,楼冠男,柳伟,等.微电网分布式控制理论与方法 [M].北京:科学出版社,2019.GU W,LOU G N,LIU W,et al.Distributed control theory and method of microgrid [M].Beijin:Science Press,2019.(in Chinese)

    • [8] ZHU W,RUI Y,WANG L.Intelligent multi-agent control for integrated building and micro-grid systems [C]//Innovative Smart Grid Technologies(ISGT),2011 IEEE PES.IEEE,2011.

    • [9] 陈杰,方浩,欣斌,等.多智能体系统的协同群集运动控制 [M].北京:科学出版社,2017.CHEN J,FANG H,XIN B,et al.Cooperative cluster motion control of multi-agent system [M].Beijin:Science Press,2017.(in Chinese)

    • [10] 张秋花,薛惠锋,吴介军,等.多智能体系统MAS及其应用 [J].计算机仿真,2007,24(6):133-137.ZHANG Q H,XUE H F,WU J J,et al.Theory and application of the multi-agent system [J].Computer Simulation,2007,24(6):133-137.(in Chinese)

    • [11] 吴丽珍,雷艾虎,郝晓弘.孤岛微电网电压和频率网络化分层控制 [J].控制工程,2019,26(1):162-169.WU L Z,LEI A H,HAO X H.Voltage and frequency networked hierarchical control for islanded microgrids [J].Control Engineering of China,2019,26(1):162-169.(in Chinese)

    • [12] SAVAGHEBI M.Secondary control scheme for voltage unbalance compensation in an islanded droop-controlled microgrid [J].IEEE Transactions on Smart Grid,2012,3(2):797-807.

    • [13] 苗海东,王金梅,马文涛,等.一种改进的微电网无功分配控制策略研究 [J].电气传动,2021,51(1):51-55.MIAO H D,WANG J M,MA W T,et al.Research on an improved control strategy of reactive power distribution in microgrids [J].Electric Drive,2021,51(1):51-55.(in Chinese)

    • [14] 颜湘武,王月茹,王星海.逆变器并联功率解耦及鲁棒下垂控制方法研究 [J].电力科学与技术学报,2016,31(1):11-16.YAN X W,WANG Y R,WANG X H.Study on power decoupling and robust droop control method of parallel inverter [J].Journal of Electric Power Science and Technology,2016,31(1):11-16.(in Chinese)

    • [15] 张德斌,朱纯领,杨高孟.基于下垂控制并网逆变器改进控制策略的研究 [J].电力电子技术,2015,49(3):40-42.ZHANG D B,ZHU C L,YANG G M.Research on an improved control strategy of inverter based on the droop control [J].Power Electronics,2015,49(3):40-42.(in Chinese)

    • [16] MA X P,YANG P L,DONG H Y,et al.Secondary control strategy of islanded micro-grid based on multi-agent consistency [C]//2017 IEEE Conference on Energy Internet and Energy System Integration(EI2).IEEE,2017.

    • [17] XU Y L,SUN H B,GU W,et al.Optimal distributed control for secondary frequency and voltage regulation in an islanded microgrid [J].IEEE Transactions on Industrial Informatics,2018:225-235.

    • [18] SAHOO A K,MAHMUD K,CRITTENDEN M,et al.Communication-less primary and secondary control in inverter-interfaced AC microgrid:an overview [J].IEEE Journal of Emerging and Selected Topics in Power Electronics,2021,9(5):5164-5182.

    • [19] 肖湘宁,王鹏,陈萌.基于分布式多代理系统的孤岛微电网二次电压控制策略 [J].电工技术学报,2018,33(8):1894-1902.XIAO X N,WANG P,CHEN M.Secondary voltage control in an islanded microgrid based on distributed multi-agent system [J].Transactions of China Electrotechnical Society,2018,33(8):1894-1902.(in Chinese)

    • [20] 周烨,汪可友,李国杰,等.基于多智能体一致性算法的微电网分布式分层控制策略 [J].电力系统自动化,2017,41(11):142-149.ZHOU Y,WANG K Y,LI G J,et al.Distributed hierarchical control for microgrid based on multi-agent consensus algorithm [J].Automation of Electric Power Systems,2017,41(11):142-149.(in Chinese)

    • [21] YAZDANIAN M,MEHRIZI-SANI A.Distributed control techniques in microgrids [J].IEEE Transactions on Smart Grid,2014,5(6):2901-2909.

    • [22] SIMPSON-PORCO J W,SHAFI E Q,DORFLER F,et al.Secondary frequency and voltage control of islanded microgrids via distributed averaging [J].IEEE Transactions on Industrial Electronics,2015,62(11):7025-7038.

    • [23] 唐骥宇.多智能体系统一致性问题研究[D].西安:长安大学,2014.TANG J Y.Consensus problem in multi-agent systems[D].Xi′an:Chang'an University,2014.(in Chinese)

    • [24] CHEN L J,WANG Y Y,ZHENG T W,et al.Consensus-based distributed control with communication time delays for virtual synchronous generators in isolate microgrid [C]//The 9th Asia-Pacific Power and Energy Engineering Conference(APPEEC 2017),Chengdu,2017-04-15.

    • [25] 王荣浩,邢建春,王平,等.地面无人系统的多智能体协同控制研究综述 [J].动力学与控制学报,2016,14(2):97-108.WANG R H,XING J C,WANG P.An overview on multi-agents cooperative control of unmanned ground system [J].Journal of dynamics and control,2016,14(2):97-108.(in Chinese)

    • [26] OLFATI-SABER R,MURRAY R M.Consensus problems in networks of agents with switching topology and time-delays [J].IEEE Transactions on Automatic Control,2004,49(9):1520-1533.

    • [27] WANG L,XIAO F.Finite-time consensus problems for networks of dynamic agents [J].IEEE Transactions on Automatic Control,2010,55(4):950-955.

    • [28] BAI S T.Secondary control of island microgrid based on distributed multi-agent system under symmetric time delay [C].IOP Conference Series Materials Science and Engineering,2020,853(1):012007.

    • [29] 苏晨,吴在军,窦晓波.孤岛微电网分布式P-V协调控制策略 [J].电力自动化设备,2021,41(4):101-108.SU C,WU Z J,DOU X B.Distributed P-V coordinated control strategy for islanded microgrid [J].Electric Power Automation Equipment,2021,41(4):101-108.(in Chinese)

    • [30] 王晓兰,曲利民,张晓英,等.基于一致性算法的孤岛微电网协同控制 [J].兰州理工大学学报,2016,42(5):77-83.WANG X L,QU L M,ZHANG X Y,et al.Cooperative control of islanded microgrids based on consensus algorithm [J].Journal of Lanzhou University of Technology,2016,42(5):77-83.(in Chinese)

    • [31] 王海晴.孤岛微电网的二级电压控制研究[D].吉林:东北电力大学,2020.WANG H Q,Research on secondary voltage control of islanded microgrid [D].Jilin:Northeast Electric Power University,2020.(in Chinese)

    • [32] 万晓凤,涂慧朋,丁小华,等.基于多智能体一致性的孤岛微网协调二次控制 [J].电气传动,2020,50(8):87-92.WAN X F,TU H P,DING X H,et al.Cooperative secondary control in an islanded microgrid based on multi-agent consistency protocol [J].Electric Drive,2020,50(8):87-92.(in Chinese)

    • [33] DOU C X,ZHANG B,YUE D,et al.A novel hierarchical control strategy combined with sliding mode control and consensus control for islanded micro-grid [J].IET Renewable Power Generation,2018,12(9):1012-1024.

    • [34] 邓思成,陈来军,郑天文,等.考虑系统延时的微电网有功功率分布式控制策略 [J].电网技术,2019,43(5):1536-1542.DENG S C,CHEN L J,ZHENG T W,et al.Active power distributed control of microgrids considering system time delays [J].Power System Technology,2019,43(5):1536-1542.(in Chinese)

    • [35] 许德明,李泽,郝万君.孤岛微电网系统电压和频率稳定控制研究综述 [J].电子世界,2019(22):11-13,17.XU D M,LI Z,HAO W J.Overview on voltage and frequency stability control of island microgrid system [J].Electronic World,2019(22):11-13,17.(in Chinese)

    • [36] 佘莹莹.多智能体系统一致性若干问题的研究[D].武汉:华中科技大学,2010.SHE Y Y.Research on several problems of consensus in multi-agent system[D].Wuhan:Huazhong University of science and technology,2010.(in Chinese)

    • [37] 唐彬峰.基于多智能体有限时间一致性的微电网优化策略研究[D].兰州:兰州交通大学,2020.TANG B F.Research on optimization strategy for microgrid based on finite-time consensus of multi-agent[D].Lanzhou:Lanzhou Jiaotong University,2020.(in Chinese)

    • [38] 涂慧朋.基于多智能体的孤岛微电网控制研究[D].南昌:南昌大学,2020.TU H P.Research on island microgrid control based on multi-agent[D].Nanchang:Nanchang University,2020.(in Chinese)

    • [39] 王满商,邓思成,郑天文,等.非理想通信条件下微电网分布式有功功率控制 [J].电网技术,2021,45(2):680-688.WANG M S,DENG S C,ZHENG T W,et al.Distributed active power control of microgrids under non-ideal communication [J].Power System Technology,2021,45(2):680-688.(in Chinese)

    • [40] 杨秋霞,袁冬梅,郭小强,等.CPS概念下基于事件触发且考虑通信丢包及扰动的微网分层控制策略 [J].电工技术学报,2019,34(15):3209-3221.YANG Q X,YUAN D M,GUO X Q,et al.An event-triggered hierarchical control strategy based on concept of CPS for micro-grid considering with packet loss and communication disturbance [J].Transactions of China Electrotechnical Society,2019,34(15):3209-3221.(in Chinese)

    • [41] 张善路,李磊,陈鹏威,等.多智能体系统在微电网中的应用 [J].南京理工大学学报,2021,45(2):127-141.ZHANG S L,LI L,CHEN P W,et al.Application of multi-agent system in microgrid [J].Journal of Nanjing University of Science and Technology,2021,45(2):127-141.(in Chinese)

    • [42] 柴洁,过榴晓,陈晶,等.二阶多智能体系统的线性广义一致性 [J].动力学与控制学报,2021,19(1):80-86.CAI J,GUO L X,CHEN J,et al.Linear generalized consensus of second-order multi-agent systems [J].Journal of Dynamics and Control,2021,19(1):80-86.(in Chinese)

    • [43] 蔡鹏程,文传博.基于比率一致性算法的孤岛微电网分布式二次频率控制 [J].太阳能学报,2020,41(10):74-81.CAI P C,WEN C B.Secondary frequency control of islanded microgrids based on ratio consensus algorithm [J].Acta Energiae Solaris Sinica,2020,41(10):74-81.(in Chinese)

    • [44] 柏少童.基于分布一致性算法的孤岛微电网二次控制[D].南京:南京邮电大学,2020.BAI S T.Secondary control of island microgrid based on distributed consistency algorithm[D].Nanjing:Nanjing University of Posts and Telecommunications,2020.(in Chinese)

    • [45] ÅSTRÖM K J.Event based control [J].Analysis & Design of Nonlinear Control Systems,2008:127-147.

    • [46] 李富强,豆根生,郑宝周.基于事件触发机制的多智能体网络平均一致性研究 [J].计算机应用研究,2017,34(3):665-670.LI F Q,DOU G S,ZHENG B Z.Study on average consistency of multi-agent networks based on event-triggered mechanism [J].Application Research of Computers,2017,34(3):665-670.(in Chinese)

    • [47] 张健,周建萍,茅大钧,等.基于事件触发的孤岛微电网二次协调控制策略 [J].浙江电力,2021,40(4):1-9.ZHANG J,ZHOU J P,MAO D J,et al.Secondary coordinated control strategy of islanded microgrid based on event trigger [J].Zhejiang Electric Power,2021,40(4):1-9.(in Chinese)

  • 参考文献

    • [1] 王成山,李鹏.分布式发电、微网与智能配电网的发展与挑战 [J].电力系统自动化,2010,34(2):10-14,23.WANG C S,LI P.Development and challenges of distributed generation,the micro-grid and smart distribution system [J].Automation of Electric Power Systems,2010,34(2):10-14,23.(in Chinese)

    • [2] 张昊.微电网技术的应用现状和前景分析 [J].中国高新科技,2019(13):101-104.ZHANG H.Application status and prospect analysis of microgrid technology [J].China High-Tech,2019(13):101-104.(in Chinese)

    • [3] DAN W,DRAGICEVIC T,VASQUEZ J C,et al.Secondary coordinated control of islanded microgrids based on consensus algorithms [C]//2014 IEEE Energy Conversion Congress and Exposition(ECCE).IEEE,2014.

    • [4] 郑漳华,艾芊.微电网的研究现状及在我国的应用前景 [J].电网技术,2008(16):27-31,58.ZHENG Z H,AI Q.Present situation of research on microgrid and its application prospects in China [J].Power System Technology,2008(16):27-31,58.(in Chinese)

    • [5] 王燕廷.微电网并网与孤岛运行模式切换的研究[D].吉林:东北电力大学,2011.WANG Y T.Study on the switching of micro-grid grid-connected and autonomous modes[D].Jilin:Northeast Electric Power University,2011.(in Chinese)

    • [6] 杨新法,苏剑,吕志鹏,等.微电网技术综述 [J].中国电机工程学报,2014,34(1):57-70.YANG X F,SU J,LV Z P,et al.Overview on micro-grid technology [J].Chinese Journal of Electrical Engineering,2014,34(1):57-70.(in Chinese)

    • [7] 顾伟,楼冠男,柳伟,等.微电网分布式控制理论与方法 [M].北京:科学出版社,2019.GU W,LOU G N,LIU W,et al.Distributed control theory and method of microgrid [M].Beijin:Science Press,2019.(in Chinese)

    • [8] ZHU W,RUI Y,WANG L.Intelligent multi-agent control for integrated building and micro-grid systems [C]//Innovative Smart Grid Technologies(ISGT),2011 IEEE PES.IEEE,2011.

    • [9] 陈杰,方浩,欣斌,等.多智能体系统的协同群集运动控制 [M].北京:科学出版社,2017.CHEN J,FANG H,XIN B,et al.Cooperative cluster motion control of multi-agent system [M].Beijin:Science Press,2017.(in Chinese)

    • [10] 张秋花,薛惠锋,吴介军,等.多智能体系统MAS及其应用 [J].计算机仿真,2007,24(6):133-137.ZHANG Q H,XUE H F,WU J J,et al.Theory and application of the multi-agent system [J].Computer Simulation,2007,24(6):133-137.(in Chinese)

    • [11] 吴丽珍,雷艾虎,郝晓弘.孤岛微电网电压和频率网络化分层控制 [J].控制工程,2019,26(1):162-169.WU L Z,LEI A H,HAO X H.Voltage and frequency networked hierarchical control for islanded microgrids [J].Control Engineering of China,2019,26(1):162-169.(in Chinese)

    • [12] SAVAGHEBI M.Secondary control scheme for voltage unbalance compensation in an islanded droop-controlled microgrid [J].IEEE Transactions on Smart Grid,2012,3(2):797-807.

    • [13] 苗海东,王金梅,马文涛,等.一种改进的微电网无功分配控制策略研究 [J].电气传动,2021,51(1):51-55.MIAO H D,WANG J M,MA W T,et al.Research on an improved control strategy of reactive power distribution in microgrids [J].Electric Drive,2021,51(1):51-55.(in Chinese)

    • [14] 颜湘武,王月茹,王星海.逆变器并联功率解耦及鲁棒下垂控制方法研究 [J].电力科学与技术学报,2016,31(1):11-16.YAN X W,WANG Y R,WANG X H.Study on power decoupling and robust droop control method of parallel inverter [J].Journal of Electric Power Science and Technology,2016,31(1):11-16.(in Chinese)

    • [15] 张德斌,朱纯领,杨高孟.基于下垂控制并网逆变器改进控制策略的研究 [J].电力电子技术,2015,49(3):40-42.ZHANG D B,ZHU C L,YANG G M.Research on an improved control strategy of inverter based on the droop control [J].Power Electronics,2015,49(3):40-42.(in Chinese)

    • [16] MA X P,YANG P L,DONG H Y,et al.Secondary control strategy of islanded micro-grid based on multi-agent consistency [C]//2017 IEEE Conference on Energy Internet and Energy System Integration(EI2).IEEE,2017.

    • [17] XU Y L,SUN H B,GU W,et al.Optimal distributed control for secondary frequency and voltage regulation in an islanded microgrid [J].IEEE Transactions on Industrial Informatics,2018:225-235.

    • [18] SAHOO A K,MAHMUD K,CRITTENDEN M,et al.Communication-less primary and secondary control in inverter-interfaced AC microgrid:an overview [J].IEEE Journal of Emerging and Selected Topics in Power Electronics,2021,9(5):5164-5182.

    • [19] 肖湘宁,王鹏,陈萌.基于分布式多代理系统的孤岛微电网二次电压控制策略 [J].电工技术学报,2018,33(8):1894-1902.XIAO X N,WANG P,CHEN M.Secondary voltage control in an islanded microgrid based on distributed multi-agent system [J].Transactions of China Electrotechnical Society,2018,33(8):1894-1902.(in Chinese)

    • [20] 周烨,汪可友,李国杰,等.基于多智能体一致性算法的微电网分布式分层控制策略 [J].电力系统自动化,2017,41(11):142-149.ZHOU Y,WANG K Y,LI G J,et al.Distributed hierarchical control for microgrid based on multi-agent consensus algorithm [J].Automation of Electric Power Systems,2017,41(11):142-149.(in Chinese)

    • [21] YAZDANIAN M,MEHRIZI-SANI A.Distributed control techniques in microgrids [J].IEEE Transactions on Smart Grid,2014,5(6):2901-2909.

    • [22] SIMPSON-PORCO J W,SHAFI E Q,DORFLER F,et al.Secondary frequency and voltage control of islanded microgrids via distributed averaging [J].IEEE Transactions on Industrial Electronics,2015,62(11):7025-7038.

    • [23] 唐骥宇.多智能体系统一致性问题研究[D].西安:长安大学,2014.TANG J Y.Consensus problem in multi-agent systems[D].Xi′an:Chang'an University,2014.(in Chinese)

    • [24] CHEN L J,WANG Y Y,ZHENG T W,et al.Consensus-based distributed control with communication time delays for virtual synchronous generators in isolate microgrid [C]//The 9th Asia-Pacific Power and Energy Engineering Conference(APPEEC 2017),Chengdu,2017-04-15.

    • [25] 王荣浩,邢建春,王平,等.地面无人系统的多智能体协同控制研究综述 [J].动力学与控制学报,2016,14(2):97-108.WANG R H,XING J C,WANG P.An overview on multi-agents cooperative control of unmanned ground system [J].Journal of dynamics and control,2016,14(2):97-108.(in Chinese)

    • [26] OLFATI-SABER R,MURRAY R M.Consensus problems in networks of agents with switching topology and time-delays [J].IEEE Transactions on Automatic Control,2004,49(9):1520-1533.

    • [27] WANG L,XIAO F.Finite-time consensus problems for networks of dynamic agents [J].IEEE Transactions on Automatic Control,2010,55(4):950-955.

    • [28] BAI S T.Secondary control of island microgrid based on distributed multi-agent system under symmetric time delay [C].IOP Conference Series Materials Science and Engineering,2020,853(1):012007.

    • [29] 苏晨,吴在军,窦晓波.孤岛微电网分布式P-V协调控制策略 [J].电力自动化设备,2021,41(4):101-108.SU C,WU Z J,DOU X B.Distributed P-V coordinated control strategy for islanded microgrid [J].Electric Power Automation Equipment,2021,41(4):101-108.(in Chinese)

    • [30] 王晓兰,曲利民,张晓英,等.基于一致性算法的孤岛微电网协同控制 [J].兰州理工大学学报,2016,42(5):77-83.WANG X L,QU L M,ZHANG X Y,et al.Cooperative control of islanded microgrids based on consensus algorithm [J].Journal of Lanzhou University of Technology,2016,42(5):77-83.(in Chinese)

    • [31] 王海晴.孤岛微电网的二级电压控制研究[D].吉林:东北电力大学,2020.WANG H Q,Research on secondary voltage control of islanded microgrid [D].Jilin:Northeast Electric Power University,2020.(in Chinese)

    • [32] 万晓凤,涂慧朋,丁小华,等.基于多智能体一致性的孤岛微网协调二次控制 [J].电气传动,2020,50(8):87-92.WAN X F,TU H P,DING X H,et al.Cooperative secondary control in an islanded microgrid based on multi-agent consistency protocol [J].Electric Drive,2020,50(8):87-92.(in Chinese)

    • [33] DOU C X,ZHANG B,YUE D,et al.A novel hierarchical control strategy combined with sliding mode control and consensus control for islanded micro-grid [J].IET Renewable Power Generation,2018,12(9):1012-1024.

    • [34] 邓思成,陈来军,郑天文,等.考虑系统延时的微电网有功功率分布式控制策略 [J].电网技术,2019,43(5):1536-1542.DENG S C,CHEN L J,ZHENG T W,et al.Active power distributed control of microgrids considering system time delays [J].Power System Technology,2019,43(5):1536-1542.(in Chinese)

    • [35] 许德明,李泽,郝万君.孤岛微电网系统电压和频率稳定控制研究综述 [J].电子世界,2019(22):11-13,17.XU D M,LI Z,HAO W J.Overview on voltage and frequency stability control of island microgrid system [J].Electronic World,2019(22):11-13,17.(in Chinese)

    • [36] 佘莹莹.多智能体系统一致性若干问题的研究[D].武汉:华中科技大学,2010.SHE Y Y.Research on several problems of consensus in multi-agent system[D].Wuhan:Huazhong University of science and technology,2010.(in Chinese)

    • [37] 唐彬峰.基于多智能体有限时间一致性的微电网优化策略研究[D].兰州:兰州交通大学,2020.TANG B F.Research on optimization strategy for microgrid based on finite-time consensus of multi-agent[D].Lanzhou:Lanzhou Jiaotong University,2020.(in Chinese)

    • [38] 涂慧朋.基于多智能体的孤岛微电网控制研究[D].南昌:南昌大学,2020.TU H P.Research on island microgrid control based on multi-agent[D].Nanchang:Nanchang University,2020.(in Chinese)

    • [39] 王满商,邓思成,郑天文,等.非理想通信条件下微电网分布式有功功率控制 [J].电网技术,2021,45(2):680-688.WANG M S,DENG S C,ZHENG T W,et al.Distributed active power control of microgrids under non-ideal communication [J].Power System Technology,2021,45(2):680-688.(in Chinese)

    • [40] 杨秋霞,袁冬梅,郭小强,等.CPS概念下基于事件触发且考虑通信丢包及扰动的微网分层控制策略 [J].电工技术学报,2019,34(15):3209-3221.YANG Q X,YUAN D M,GUO X Q,et al.An event-triggered hierarchical control strategy based on concept of CPS for micro-grid considering with packet loss and communication disturbance [J].Transactions of China Electrotechnical Society,2019,34(15):3209-3221.(in Chinese)

    • [41] 张善路,李磊,陈鹏威,等.多智能体系统在微电网中的应用 [J].南京理工大学学报,2021,45(2):127-141.ZHANG S L,LI L,CHEN P W,et al.Application of multi-agent system in microgrid [J].Journal of Nanjing University of Science and Technology,2021,45(2):127-141.(in Chinese)

    • [42] 柴洁,过榴晓,陈晶,等.二阶多智能体系统的线性广义一致性 [J].动力学与控制学报,2021,19(1):80-86.CAI J,GUO L X,CHEN J,et al.Linear generalized consensus of second-order multi-agent systems [J].Journal of Dynamics and Control,2021,19(1):80-86.(in Chinese)

    • [43] 蔡鹏程,文传博.基于比率一致性算法的孤岛微电网分布式二次频率控制 [J].太阳能学报,2020,41(10):74-81.CAI P C,WEN C B.Secondary frequency control of islanded microgrids based on ratio consensus algorithm [J].Acta Energiae Solaris Sinica,2020,41(10):74-81.(in Chinese)

    • [44] 柏少童.基于分布一致性算法的孤岛微电网二次控制[D].南京:南京邮电大学,2020.BAI S T.Secondary control of island microgrid based on distributed consistency algorithm[D].Nanjing:Nanjing University of Posts and Telecommunications,2020.(in Chinese)

    • [45] ÅSTRÖM K J.Event based control [J].Analysis & Design of Nonlinear Control Systems,2008:127-147.

    • [46] 李富强,豆根生,郑宝周.基于事件触发机制的多智能体网络平均一致性研究 [J].计算机应用研究,2017,34(3):665-670.LI F Q,DOU G S,ZHENG B Z.Study on average consistency of multi-agent networks based on event-triggered mechanism [J].Application Research of Computers,2017,34(3):665-670.(in Chinese)

    • [47] 张健,周建萍,茅大钧,等.基于事件触发的孤岛微电网二次协调控制策略 [J].浙江电力,2021,40(4):1-9.ZHANG J,ZHOU J P,MAO D J,et al.Secondary coordinated control strategy of islanded microgrid based on event trigger [J].Zhejiang Electric Power,2021,40(4):1-9.(in Chinese)

  • 微信公众号二维码

    手机版网站二维码