en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

徐鉴,E-mail:jian_xu@fudan.edu.cn

中图分类号:O313.7;TP242.6

文献标识码:A

文章编号:1672-6553-2023-21(1)-001-017

DOI:10.6052/1672-6553-2022-039

参考文献 1
ZHU Y,ZHAO J,CUI X,et al.Design and implementation of UBot:a modular self-reconfigurable robot [C].2013 IEEE International Conference on Mechatronics and Automation,IEEE ICMA 2013,2013:1217-1222.
参考文献 2
SPRÖWITZ A,POUYA S,BONARDI S,et al.Roombots:reconfigurable robots for adaptive furniture [J].IEEE Computational Intelligence Magazine,2010,5(3):20-32.
参考文献 3
SPRÖWITZ A,MOECKEL R,VESPIGNANI M,et al.Roombots:a hardware perspective on 3D self-reconfiguration and locomotion with a homogeneous modular robot [J].Robotics and Autonomous Systems,2014,62(7):1016-1033.
参考文献 4
HAUSER S,MUTLU M,LÉZIART P A,et al.Roombots extended:Challenges in the next generation of self-reconfigurable modular robots and their application in adaptive and assistive furniture [J].Robotics and Autonomous Systems,2020,127:103467.
参考文献 5
DORIGO M.Swarm-bot:an experiment in swarm robotics [C].Proceedings-2005 IEEE Swarm Intelligence Symposium,SIS 2005,2005:192-200.
参考文献 6
MONDADA F,PETTINARO G C,GUIGNARD A,et al.Swarm-bot:a new distributed robotic concept [J].Autonomous Robots,2004,17(2-3):193-221.
参考文献 7
LIOW L,CLARK A B,ROJAS N.OLYMPIC:a modular,tendon-driven prosthetic hand with novel finger and wrist coupling mechanisms [J].IEEE Robotics and Automation Letters,2020,5(2):299-306.
参考文献 8
DENAVIT J,HARTENBERG R S.A kinematic notation for lower-pair mechanisms based on matrices [J].Journal of Applied Mechanics,1955,22(2):215-221.
参考文献 9
BROCKETT R W.Robotic manipulators and the product of exponentials formula [J].Mathematical Theory of Networks and Systems,1984:120-129.
参考文献 10
VLADAREANU L,TONT G,ION I,et al.Fuzzy dynamic modeling for walking modular robot control [C].Proceedings of the 9th WSEAS International Conference on Applications of Electrical Engineering,2010:163-170.
参考文献 11
WHITMAN J,TRAVERS M,CHOSET H.Learning modular robot control policies [J].2021:1-19.
参考文献 12
GIUSTI A,ALTHOFF M.On-the-Fly control design of modular robot manipulators [J].IEEE Transactions on Control Systems Technology,2018,26(4):1484-1491.
参考文献 13
MELEK W W,GOLDENBERG A A.Neurofuzzy control of modular and reconfigurable robots [J].IEEE/ASME Transactions on Mechatronics,2003,8(3):381-389.
参考文献 14
RÜCKERT P,ADAM J,PAPENBERG B,et al.Calibration of a modular assembly system for personalized and adaptive human robot collaboration [J].Procedia CIRP,2018,76:199-204.
参考文献 15
CHEN I M.A novel kinematic calibration algorithm for reconfigurable robotic systems [C].Proceedings of International Conference on Robotics and Automation,1997:3197-3202.
参考文献 16
LIU S B,ALTHOFF M.Optimizing performance in automation through modular robots [C].Proceedings-IEEE International Conference on Robotics and Automation,2020:4044-4050.
参考文献 17
WU W,GUAN Y,YANG Y,et al.Multi-objective configuration optimization of assembly-level reconfigurable modular robots [C].2016 IEEE International Conference on Information and Automation,IEEE ICIA 2016,2017:528-533.
参考文献 18
MARBACH D,IJSPEERT A J.Online optimization of modular robot locomotion [C].IEEE International Conference on Mechatronics and Automation,ICMA 2005,2005:248-253.
参考文献 19
YANG G,CHEN I M.Task-based optimization of modular robot configurations:minimized degree-of-freedom approach [J].Mechanism and Machine Theory,2000,35(4):517-540.
参考文献 20
MOUBARAK P,BEN-TZVI P.Modular and reconfigurable mobile robotics [J].Robotics and Autonomous Systems,2012,60(12):1648-1663.
参考文献 21
CHENNAREDDY S S R,AGRAWAL A,KARUPPIAH A.Modular self-reconfigurable robotic systems:a survey on hardware architectures [J].Journal of Robotics,2017.
参考文献 22
ALATTAS R J,PATEL S,SOBH T M.Evolutionary modular robotics:survey and analysis [J].Journal of Intelligent and Robotic Systems:Theory and Applications,2019,95(3-4):815-828.
参考文献 23
ØSTERGAARD E H,KASSOW K,BECK R,et al.Design of the ATRON lattice-based self-reconfigurable robot [J].Autonomous Robots,2006,21(2):165-183.
参考文献 24
ROMANISHIN J W,GILPIN K,CLAICI S,et al.3D M-Blocks:self-reconfiguring robots capable of locomotion via pivoting in three dimensions [C].Proceedings-IEEE International Conference on Robotics and Automation,2015:1925-1932.
参考文献 25
SUH J W,HOMANS S B,YIM M.Telecubes:mechanical design of a module for self-reconfigurable robotics [C].Proceedings-IEEE International Conference on Robotics and Automation,2002,4:4095-4101.
参考文献 26
RUS D,VONA M.Physical implementation of the self-reconfiguring crystalline robot [C].Proceedings-IEEE International Conference on Robotics and Automation,2000,2:1726-1733.
参考文献 27
GRANDGIRARD J,POINSOT D,KRESPI L,et al.A modular self-reconfigurable bipartite robotic system:implementation and motion planning [J].Autonomous Robots,2001,10:23-40.
参考文献 28
QIAO G,SONG G,ZHANG J,et al.Design of transmote:a modular self-reconfigurable robot with versatile transformation capabilities [C].2012 IEEE International Conference on Robotics and Biomimetics,ROBIO 2012-Conference Digest,2012:1331-1336.
参考文献 29
YIM M,DUFF D G,ROUFAS K D.PolyBbot:a modular reconfigurable robot [C].Proceedings-IEEE International Conference on Robotics and Automation,2000,1:514-520.
参考文献 30
HIROSE S,SHIRASU T,FUKUSHIMA E F.Proposal for cooperative robot “Gunryu” composed of autonomous segments [J].Robotics and Autonomous Systems,1996,17(1-2):107-118.
参考文献 31
YIM M,SHIRMOHAMMADI B,SASTRA J,et al.Towards robotic self-reassembly after explosion [C].IEEE International Conference on Intelligent Robots and Systems,2007:2767-2772.
参考文献 32
LYDER A,GARCIA R F M,STOY K.Mechanical design of Odin,an extendable heterogeneous deformable modular robot [J].2008 IEEE/RSJ International Conference on Intelligent Robots and Systems,IROS,2008:883-888.
参考文献 33
YU C H,HALLER K,INGBER D,et al.Morpho:a self-deformable modular robot inspired by cellular structure [J].2008 IEEE/RSJ International Conference on Intelligent Robots and Systems,IROS,2008:3571-3578.
参考文献 34
KUROKAWA H,TOMITA K,KAMIMURA A,et al.Distributed self-reconfiguration of M-TRAN Ⅲ modular robotic system [J].International Journal of Robotics Research,2008,27(3-4):373-386.
参考文献 35
ZYKOV V,MYTILINAIOS E,DESNOYER M,et al.Evolved and designed self-reproducing modular robotics [J].IEEE Transactions on Robotics,2007,23(2):308-319.
参考文献 36
SHEN W M,KRIVOKON M,RUBENSTEIN M,et al.Multimode locomotion via self-reconfigurable robots [J].Autonomous Robots,2006,20(2):165-177.
参考文献 37
ZHU Y,ZHAO J,CUI X,et al.Design and implementation of UBot:a modular self-reconfigurable robot [C].2013 IEEE International Conference on Mechatronics and Automation,IEEE ICMA 2013,2013:1217-1222.
参考文献 38
KIRBY B,CAMPBELL J,AKSAK B,et al.Catoms:moving robots without moving parts [C].Proceedings of the National Conference on Artificial Intelligence,2005,4:1730-1731.
参考文献 39
BRANDT D,CHRISTENSEN D J,LUND H H.ATRON robots:versatility from self-reconfigurable modules [C].Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation,ICMA 2007,2007:26-32.
参考文献 40
JØRGENSEN M W,ØSTERGAARD E H,LUND H H.Modular ATRON:modules for a self-reconfigurable robot [C].2004 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS),2004,2:2068-2073.
参考文献 41
ROMANISHIN J W,GILPIN K,Rus D.M-blocks:momentum-driven,magnetic modular robots [C].IEEE International Conference on Intelligent Robots and Systems,2013:4288-4295.
参考文献 42
ROMANISHIN J W.M-Blocks:three dimensional modular self-reconfigurable robots [R].Massachusetts Institute of Technology,2018.
参考文献 43
YIM M,DUFF D G,ROUFAS K D.PolyBbot:a modular reconfigurable robot [C]//Proceedings-IEEE International Conference on Robotics and Automation.2000:514-520.
参考文献 44
YIM M,ZHANG Y,ROUFAS K,et al.Connecting and disconnecting for chain self-reconfiguration with PolyBbot [J].IEEE/ASME Transactions on Mechatronics,2002,7(4):442-451.
参考文献 45
MURATA S,YOSHIDA E,KAMIMURA A,et al.M-TRAN:self-reconfigurable modular robotic system [J].IEEE/ASME Transactions on Mechatronics,2002,7(4):431-441.
参考文献 46
KUROKAWA H,KAMIMURA A,YOSHIDA E,et al.M-TRAN Ⅱ:metamorphosis from a four-legged walker to a caterpillar [C].IEEE International Conference on Intelligent Robots and Systems,2003,3:2454-2459.
参考文献 47
SPINOS A,CARROLL D,KIENTZ T,et al.Variable topology truss:design and analysis [C].IEEE International Conference on Intelligent Robots and Systems,2017:2717-2722.
参考文献 48
LIU C,YU S,YIM M.Motion planning for variable topology truss modular robot [J].Robotics:Science and Systems,2020.
参考文献 49
SHIMIZU M,MORI T,ISHIGURO A.A development of a modular robot that enables adaptive reconfiguration [C].IEEE International Conference on Intelligent Robots and Systems,2006:174-179.
参考文献 50
CHRISTENSEN D J.Evolution of shape-changing and self-repairing control for the ATRON self-reconfigurable robot [C].Proceedings-IEEE International Conference on Robotics and Automation,2006:2539-2545.
参考文献 51
KAMIMURA A,KUROKAWA H,YOSHIDA E,et al.Distributed adaptive locomotion by a modular robotic system,M-TRAN Ⅱ-From local adaptation to global coodinated motion using CPG controllers [C].2004 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS),2004,3:2370-2377.
参考文献 52
LIU C,LIN Q,KIM H,et al.SMORES-EP,a modular robot with parallel self-assembly [J].2021.
参考文献 53
JING G,TOSUN T,YIM M,et al.An end-to-end system for accomplishing tasks with modular robots [J].Robotics:Science and Systems,2016,12.
参考文献 54
TOSUN T,DAUDELIN J,JING G,et al.Perception-informed autonomous environment augmentation with modular robots [C].Proceedings-IEEE International Conference on Robotics and Automation,2018:6818-6824.
参考文献 55
SHIMIZU M,ISHIGURO A,KAWAKATSU T.A modular robot that exploits a spontaneous connectivity control mechanism [C].2005 IEEE/RSJ International Conference on Intelligent Robots and Systems,IROS,2005(1):1899-1904.
参考文献 56
吴文强.可重构模块化机器人建模、优化与控制[D].广州:华南理工大学,2013.WU W Q.Modeling,optimation and control of reconfigurable modular robot [D].Guangzhou:South China University of Technology,2013.(in Chinese)
参考文献 57
YANG G,CHEN I M.Modular robots:theory and practice [B].Springer Singapore,2022.
参考文献 58
GUPTA K C.Kinematic analysis of manipulators using the zero reference position description [J].The International Journal of Robotics Research,1986,5(2):5-13.
参考文献 59
周冬冬,王国栋,肖聚亮等.新型模块化可重构机器人设计与运动学分析 [J].工程设计学报,2016,23(1):74-81.ZHOU D D,WANG G D,XIAO J L,et al.Design and kinematics anslysis of new modular reconfigurable robot [J].Chinese Journal of Engineering Design,2016,23(1):74-81.(in Chinese)
参考文献 60
THAKKER R,KAMAT A,BHARAMBE S,et al.ReBiS-reconfigurable bipedal snake robot [C].IEEE International Conference on Intelligent Robots and Systems,2014:309-314.
参考文献 61
TANG S,YU Y,LIANG W.Structural design and optimization of modular underactuated multi-fingered manipulator [C].Proceedings of 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference,ITOEC 2018,2018:1028-1036.
参考文献 62
LI Y,ZHU S,WANG Z,et al.The kinematics analysis of a novel self-reconfigurable modular robot based on screw theory [J].DEStech Transactions on Engineering and Technology Research,2016.
参考文献 63
YUN A,MOON D,HA J,et al.ModMan:an advanced reconfigurable manipulator system with genderless connector and automatic kinematic modeling algorithm [J].IEEE Robotics and Automation Letters,2020,5(3):4225-4232.
参考文献 64
BI Z M,GRUVER W A,ZHANG W J,et al.Automated modeling of modular robotic configurations [J].Robotics and Autonomous Systems,2006,54(12):1015-1025.
参考文献 65
KELMAR L,KHOSLA P K.Automatic generation of kinematics for a reconfigurable modular manipulator system [C].Proceedings.1988 IEEE international conference on robotics and automation,1988:663-668.
参考文献 66
CHOI J,PARK D Il,SHIN H,et al.A new approach to generate the DH parameters of modular robots [C].2017 2nd International Conference on Robotics and Automation Engineering,ICRAE 2017,2018:37-41.
参考文献 67
CHEN I M.On optimal configuration of modular reconfigurable robots [C].Proceedings of the 4th International Conference on Control,1996.
参考文献 68
CHEN I M,YANG G,KANG I G.Numerical inverse kinematics for modular reconfigurable robots [J].Journal of Robotic Systems,1999,16(4):213-225.
参考文献 69
CHEN I M,GAO Y.Closed-form inverse kinematics solver for reconfigurable robots [C].Proceedings-IEEE International Conference on Robotics and Automation,2001,3:2395-2400.
参考文献 70
CHEN I M,YANG G.Inverse kinematics for modular reconfigurable robots [C].Proceedings-IEEE International Conference on Robotics and Automation,1998,2:1647-1652.
参考文献 71
WANG J,LI Y.Analysis on the interaction between the nonholonomic mobile modular robot and the environment [C].2009 IEEE International Conference on Robotics and Biomimetics,ROBIO 2009,2009:86-91.
参考文献 72
LI X,SUN H,LIAO L,et al.Simulation and comparison research of Lagrange and Kane dynamics modeling for the 4-DOF modular industrial robot [C].5th International Conference on Advanced Design and Manufacturing Engineering,2015:251-254.
参考文献 73
LI X,SUN H X,LIAO L J,et al.Modeling and simulation research of Kane dynamics method for the 5-DOF modular industrial robot [C].Proceedings-2016 International Conference on Information System and Artificial Intelligence,ISAI 2016,2016:124-128.
参考文献 74
LI X,SUN H,LIAO L,et al.Establishing an improved kane dynamic model for the 7-DOF reconfigurable modular robot [J].Mathematical Problems in Engineering,2017.
参考文献 75
DIXIT O D,DHENDE V V.Dynamic analysis of a novel modular robot [C]//Congress on Intelligent Systems.2020:775-787.
参考文献 76
MAHKAM N,ÖZCAN O.A framework for dynamic modeling of legged modular miniature robots with soft backbones [J].Robotics and Autonomous Systems,2021,144:103841.
参考文献 77
YAO M,BELKE C H,CUI H,et al.A reconfiguration strategy for modular robots using origami folding [J].International Journal of Robotics Research,2019,38(1):73-89.
参考文献 78
WANG X,ZHANG M,GE W,et al.Dynamic modeling and configuration adaptive control for modular reconfigurable robot [J].Advances in Mechanical Engineering,2017,9(10):1-13.
参考文献 79
LEE W H,SANDERSON A C.Dynamic simulation of tetrahedron-based tetrobot [C]//Proceedings.1998 IEEE/RSJ International Conference on Intelligent Robots and Systems.1998:630-635.
参考文献 80
LILJEBÄCK P,STAVDAHL Ø,Pettersen K Y.Modular pneumatic snake robot 3D modelling,implementation and control [J].Modeling,Identification and Control,2008,29(1):21-28.
参考文献 81
PARK F C,BOBROW J E.A recursive algorithm for robot dynamics using lie groups [C].Proceeding of 1994 IEEE International Conference on Robotics and Automation,1994(3):1535-1540.
参考文献 82
FEI Y,ZHAO X,SONG L.A method for modular robots generating dynamics automatically [J].Robotica,2001,19(1):59-66.
参考文献 83
NAINER C,FEDER M,GIUSTI A.Automatic generation of kinematics and dynamics model descriptions for modular reconfigurable robot manipulators [C].IEEE International Conference on Automation Science and Engineering,2021:45-52.
参考文献 84
ZHANG X D,HE Y Q,DONG P.The high efficient dynamics modeling method for modular manipulator based on Space Operator Algebra [C].2017 IEEE International Conference on Robotics and Biomimetics,ROBIO 2017,2017:1612-1617.
参考文献 85
AOI S,SASAKI H,TSUCHIYA K.A multilegged modular robot that meanders:investigation of turning maneuvers using its inherent dynamic characteristics [J].SIAM Journal on Applied Dynamical Systems,2007,6(2):348-377.
参考文献 86
NIELSEN M C,EIDSVIK O A,BLANKE M,et al.Constrained multi-body dynamics for modular underwater robots-theory and experiments [J].Ocean Engineering,2018,149(2013):358-372.
参考文献 87
SAAB W,RACIOPPO P,KUMAR A,et al.Design of a miniature modular inchworm robot with an anisotropic friction skin [J].Robotica,2019,37(3):521-538.
参考文献 88
FEI Y,GAO H.Nonlinear dynamic modeling on multi-spherical modular soft robots [J].Nonlinear Dynamics,2014,78(2):831-838.
参考文献 89
PLITEA N,SZILAGHYI A,COCOREAN D,et al.Inverse dynamics and simulation of a 5-DOF modular parallel robot used in brachytherapy [C].Proceedings of the Romanian Academy Series A-Mathematics Physics Technical Sciences Information Science,2016,17(1):67-75.
参考文献 90
刘玉刚,李杨民,刘晓平等.基于模糊优化辨识模块化机器人关节动力学参数 [J].机械工程学报,2003,39(4):66-70.LIU Y G,LI Y M,LIU X P,et al.Identification of joint dynamic parameters of modular manipulator via fuzzy optimization [J].Chinese Journal of Mechanical Engineering,2003,39(4):66-70.(in Chinese)
参考文献 91
JIANG S,ZHENG Y,ZHU H.A contact stiffness model of machined plane joint based on fractal theory [J].Journal of Tribology,2010,132(1):1-7.
参考文献 92
MAJUMDAR A,BHUSHAN B.Fractal model of elastic-plastic contact between rough surfaces [J].Journal of Tribology,1991,113(1):1-11.
参考文献 93
GREENWOOD J A.The contact of nominally flat surfaces [C]//Proceedings of the Royal Society of London.1996:300-319.
参考文献 94
BORODICH F M,MOSOLOV A B.Fractal roughness in contact problems [J].Journal of Applied Mathematics and Mechanics,1992,56(5):681-690.
参考文献 95
GAO H,LI Y,GUAN H,et al.Dynamic simulation of modular robot joint with friction and flexibility [C].ACM International Conference Proceeding Series,2020:1-5.
参考文献 96
ZHANG T,ZHANG W,GUPTA M M.A novel docking system for modular self-reconfigurable robots [J].Robotics,2017,6(4):11-13.
参考文献 97
FEI Y,ZHAO X.Design and dock analysis for the interactive module of a lattice-based self-reconfigurable robot [J].Robotics and Autonomous Systems,2007,55(2):87-95.
参考文献 98
QIAO G,SONG G,WANG W,et al.Design and implementation of a modular self-reconfigurable robot [J].International Journal of Advanced Robotic Systems,2014,11(1):1-12.
参考文献 99
ZHANG Y,ZHENG T,FAN J,et al.Nonlinear modeling and docking tests of a soft modular robot [J].IEEE Access,2019,7:11328-11337.
参考文献 100
WEI H X,LI H Y,GUAN Y,et al.A dynamics based two-stage path model for the docking navigation of a self-assembly modular robot(Sambot)[J].Robotica,2016,34(7):1517-1528.
参考文献 101
ZHU W H,LAMARCHE T,DUPUIS E,et al.Precision control of modular robot manipulators:the VDC approach with embedded fpga [J].IEEE Transactions on Robotics,2013,29(5):1162-1179.
参考文献 102
NAINER C,GIUSTI A.Automatically deployable robust control of modular reconfigurable robot manipulators [J].IEEE Robotics and Automation Letters,2022,7(2):5286-5293.
参考文献 103
GIUSTI A,ALTHOFF M.Automatic centralized controller design for modular and reconfigurable robot manipulators [C].IEEE International Conference on Intelligent Robots and Systems,2015:3268-3275.
参考文献 104
LIU G,ABDUL S,GOLDENBERG A A.Distributed control of modular and reconfigurable robot with torque sensing [J].Robotica,2008,26(1):75-84.
目录contents

    摘要

    模块化可重构机器人由于其构型多变,运动形式丰富等特点,可以在非结构化环境或未知环境中执行任务,在最近几年迅速成为机器人研究领域的前沿和热点. 模块化可重构机器人在军事、医疗、教育等众多工程领域具有广泛的应用前景,其典型代表包括仿生多足模块化机器人、模块化可重构机械臂、晶格式模块化机器人等. 模块化可重构机器人丰富的构型设计、多样的连接特征、不断拓展的应用范围,给动力学建模与控制带来了很多挑战和机遇. 本文首先阐述了模块化可重构机器人的研究背景和意义,并概述了其构型分类与设计、构型描述与运动学建模方法.随后,本文系统回顾了模块化可重构机器人动力学研究中相关问题的最新进展,包括:(1)系统整体动力学建模;(2)结合面以及对接机构动力学建模;(3)基于动力学模型的控制方法. 本文最后提出了模块化可重构机器人动力学研究中若干值得关注的问题.

    Abstract

    Modular reconfigurable robots have rapidly become the frontier and hotspot in the field of robotics research in recent years due to their variable configurations and rich motion forms, which can perform tasks in unstructured or unknown environments. Modular robots have broad application prospects in military, medical, education, and many other engineering fields, with their typical representatives including bionic multi-legged modular robots, modular reconfigurable manipulators, lattice form modular robots, etc. The rich configuration design, diverse connection features, and expanding application scope of modular reconfigurable robots have brought many challenges and opportunities to dynamic modeling and control. This paper first expounds research background and significance of modular reconfigurable robots and outlines the configuration classification, configuration descriptions, and kinematic modeling methods. Following this, latest progress in the research of modular reconfigurable robot dynamics is systematically reviewed, including (1) overall system dynamic modeling, (2) dynamic modeling of joint surface and docking mechanism, and (3) control methods based on dynamic models. Finally, several open problems are presented for future studies.

  • 引言

  • 模块化机器人指的是由称为“模块”的单元相互连接而成的机器人系统. 该系统主要由连杆和关节模块组成,可以组装成各种机器人构型,以满足不同的任务需求. 与传统机器人技术相比,模块化机器人具有通用性、可重构性、低成本、鲁棒和自修复性等特点. 传统的机器人大多处于结构化的受控环境中,构型确定且唯一,一般针对特定的应用提供解决方案,缺乏灵活性,难以适应环境的变化或适应其他应用. 由于模块化机器人系统具有可重构性,通过人为或自动组装模块切换构型,机器人可以适应不同的环境和任务. 例如,哈尔滨工业大学研制的模块化机器人UBot[1]能够实现蠕虫构型、四足构型和履带构型三种构型的运动. 此外,当模块化机器人中一个模块出现故障时,任何其他模块都可以替换它以保持系统的运行,这体现了鲁棒和自修复性.不仅如此,模块化机器人的单个模块结构简单,一般采用同构模块,因此可以大批量生产,这降低了生产成本. 同时,相比传统机器人需要为每个型号单独培训维护人员,模块化机器人的维护成本也更低. 由于以上特性,模块化机器人在很多领域具有广泛的应用前景,例如使机器人融入人类的居住环境,成为一部分建筑元素,如楼梯、门和家具等[2-4]; 在一些危险或人类无法干预的非结构化环境中发挥作用,如进行深海任务、空间探索、军事侦察、灾难救援等[56]; 为残疾人的假肢设计提供可行方案[7].

  • 模块化可重构机器人由于其可变构型设计及多功能应用场景,在最近几十年内成为机器人领域的研究前沿和热点. 大量的相关论文出现在机器人领域的顶级会议(如IEEE International Conference on Robotics and Automation,ICRA)和期刊(如IEEE Transactions on Robotics,TRO)上. 图1展示了在Web of Science(WOS)数据库中,以“modular robot”为主题搜索到的期刊、会议和综述论文数目及其引用量在2000年至2021年间的演变趋势.20年来,在模块化机器人领域发表的论文数目不断增长,引用量从2000年的11次跃升至2021年的7243次,这充分表明学术界对模块化机器人这一前沿研究领域的兴趣迅速上升.

  • 图1 以Modular robot为主题的研究发展历程

  • Fig.1 Development process of modular robot-themed research

  • 模块化可重构机器人的硬件架构设计是机器人实现对接、构型切换、不同步态协调运动等功能的基础,常需要明确模块的运动驱动方式,自由度数量,对接机构以及对接驱动方式、传感器选择等,使模块具备一定的自主性和感知能力. 巧妙的机电设计可以大幅提升可重构机器人的性能和表现. 因此硬件设计一直是模块化可重构机器人的研究重点之一.

  • 为将模块化可重构机器人应用于工程实际,运动学建模与分析不可或缺,同时也是动力学与控制的基础. 运动学研究每个模块的位置、速度以及加速度,对于机器人编程、控制、路径规划以及设计等具有指导作用. 在模块化机器人运动学研究中有两个主要问题,即正运动学和逆运动学. 正运动学确定末端执行器坐标系在基坐标系中的位姿,而逆运动学考虑如何在给定末端执行器的位姿时确定每个关节的位移. 常用的正运动学分析方法包括Denavit-Hartenberg(D-H)法[8]、指数乘积(POE)公式[9]等,逆运动学方法包括解析法和数值法. 由于模块化机器人的装配构型和自由度的数量不固定,因此通常很难得到模块化机器人的闭式逆运动学解. 另外,运动学研究是一部分动力学与控制研究的前提和基础. 部分动力学模型生成方法需要提前建立运动学模型,同时,运动学模型为机器人控制策略提供了指导.

  • 尽管如此,模块化机器人的工作环境中可能包含摩擦、外界扰动和负载等,模块的质量、刚度等参数也会对系统振动产生影响,仅仅依靠运动学模型无法揭示这些因素的作用. 基于运动学模型的控制精度也难以满足一些高精度应用场合的需求,如模块化可重构医疗手术机械臂,因此迫切需要研究模块化机器人的动力学. 由于模块化机器人的工作环境复杂多变,构型不固定,不同于在固定环境中构型确定的机器人系统,模块化机器人需要能够根据当前构型和环境自动生成动力学模型,并实现基于动力学模型的智能控制. 这里,模块化机器人动力学模型的自动生成(Automatic generation of dynamic model)是指当给定一个新构型时,机器人内部的计算处理单元能够根据每个模块的物理属性和模块之间的连接关系自动推导出正向和逆向动力学模型,而不需要人为的重新建模. 现有模块化机器人动力学研究一般针对每个机器人的个别构型进行具体分析. 为了提高机器人对不同构型的灵活适应能力,缩短人为建模时间,部分研究者提出了针对可变构型的模块化机器人自动生成动力学模型的方法,但其对象一般是串联型或树型结构等简单构型的模块化机器人. 针对包含闭链结构、并联结构以及串并联混合结构的机器人的动力学模型自动生成方法目前依然很少. 此外,针对新颖的软体模块化机器人,以及具有可折叠变形结构的模块化机器人,相应的动力学模型变得复杂,且自动建模方法难以适用.

  • 总的来说,目前的模块化机器人研究主要关注机构的硬件架构,少数研究工作还包括机器人运动学与动力学建模,控制算法[10-13],标定[1415]以及构型优化[16-19]等. 相比于硬件架构设计,模块化机器人的建模研究起步较晚,面临较多挑战. 传统的机器人建模方法依赖于机器人的几何形状和拓扑结构,只能对当前既定构型进行建模,当机器人的构型发生变化时,原来的模型不再适用. 由于模块化机器人可以组合出丰富的几何构型,针对每种几何构型都求出相应的动力学模型存入计算机的程序库中是不切实际的,因此研究模块化可重构机器人的动力学模型自动生成算法受到研究者的关注. 而大部分自动生成动力学模型的方法仅对简单结构有效. 考虑到模块化可重构机器人的硬件架构已发展得较为成熟,并已有多篇综述关注[20-22],而模块化机器人建模的方法框架还不成熟,本文主要对模块化机器人的建模研究与分析进行综述,尤其关注动力学建模. 但是,为了使本文具有完整性,下面首先回顾了模块化机器人的构型分类与具有代表性的机器人硬件结构,并简要介绍了模块化机器人构型的抽象表示与运动学建模分析. 随后,本文聚焦于模块化机器人的动力学研究进展,从模块化机器人系统整体动力学建模、结合面或对接机构建模以及基于动力学模型的控制方法等方面对国内外相关研究成果和最新进展进行回顾,并梳理值得关注的若干问题,为相关的研究者提供参考.

  • 1 构型分类与设计

  • 基于模块化机器人单元组合的构型,可将其分为晶格式、链式、桁架式、混合式和自由式五种. 晶格式机器人的模块像生物细胞一样,通过不同方向的连接组合形成不同的整体构型,如四足型和尺蠖型等. 具有代表性的晶格式模块化机器人有ATRON[233940]和M-Blocks[244142]等. 链式模块化机器人通过一连串单元模块线性连接,整体结构可形如蛇型和蜈蚣型等,典型机器人如PolyBbot[4344]和Transmote[28]等. 与晶格式和链式机器人结构相比,混合式结构设计提供了更多的优势,它可以通过形成晶格式和链式两者的混合来轻松适应复杂环境,如M-TRAN[454634]和Molecubes[35]等. 采用基于桁架设计的模块化机器人往往使用可伸缩连杆,形成随机结构,但机器人的组合排布需要复杂的算法来确定,这类机器人在模块化机器人中相对较少,典型代表如Odin[32]和VTT[4748]等. 自由形式的模块化机器人在对接与分离时通常更灵活,可以组合成任意结构,相邻模块之间的连接不需要非常牢固,如Catoms[38]和Slimebot[49]等. 表1列出了各种经典的模块化可重构机器人,并展示了相应的构型种类、连接方式和建模类型,其中K表示运动学建模分析,D表示动力学建模分析. 同时,在本节中我们列举了每种组合构型的代表性机器人,简要介绍了其硬件设计.

  • 表1 模块化机器人分类

  • Table1 Classification of modular robots

  • 1.1 晶格式

  • 基于晶格的模块化机器人以2D或3D的形式排列在网格结构中,这种架构网络类似于原子结构,网格类似于晶体的晶格. 其他构型(如链式)的机器人可以移动到空间中任意连续位置,而晶格模块仅能移动到相邻的离散位置,因此其运动学、规划和控制相对简单,同时在对齐连接器时利用晶格规律可以实现更快、更轻松的自重构.

  • ATRON[39402350]是由丹麦南方大学Herick等开发的晶格式模块化机器人,由近似球形的模块组成,如图2(a)所示. 每个模块重0.85kg,直径110mm. 模块由两个半球通过一个旋转关节连接. 模块内部的驱动电机可以驱动半球绕穿过球体的轴沿半球赤道位置无限旋转. 每个ATRON模块最多可以连接8个相邻模块,主动对接面采用铝制的机械钩与相邻模块的被动对接面相连. 每个模块配置了感知相邻模块距离和方位的传感器,用于精确对接. ATRON 单元模块的控制器由3个人工神经网络组成:第一个决定何时行动,第二个决定何时停止,第三个计算自重构和自修复过程中每个状态的适应性,采用遗传算法优化神经网络的权值进行决策.

  • 图2 不同类型的模块化机器人概览

  • Fig.2 Overview of different types of modular robots

  • Romanishin等人开发了一种称为3D M-Blocks[24]的晶格式模块化机器人,如图2(b)所示. 每个模块边长仅50mm,由4个主要机械组件组成:框架、中心组件、飞轮和制动机构. 框架固定中心组件,而中心组件又支撑飞轮和制动机构. 此外,中心组件包含为模块供电的4个电池和控制模块的2个印刷电路板. 中心组件的核心是一个无刷电机和飞轮,连同制动机构,产生模块运动和中心组件平面变化所需的扭矩,从而使3D M-Blocks可以沿顺时针和逆时针方向旋转.3D M-Blocks的面和边缘都嵌入了永磁体,边缘磁体通过枢轴连接相邻模块,使每个模块可以沿着其他模块周围运动,面磁铁辅助模块之间精确对齐. 每个单元能够实现跳跃、受控滚动和随机滚动等多种运动,多模块连接之后可以协调驱动,实现在非结构化环境中的移动.

  • 1.2 链式

  • 基于链的模块化机器人系统由一系列模块通过串联组成. 机器人通过模块链的连接或分离来重新配置构型. 与其他构型相比,链式结构的通用性更强,因为它们可以通过连接到达连续空间中的任何一点. 但这也使对接和自重构的难度增大. 这种架构的缺点是控制难度和计算分析难度较大.

  • Yim 团队开发了PolyBbots[4344]系列的链式模块化自重构系统,如图2(c)所示. 每个模块都配备了无刷平面电机和谐波驱动器,提供一个旋转自由度. 每个模块大致呈立方形,一侧长约50mm. PolyBbot模块化机器人采用预计算的步态控制表进行运动控制,可以呈现多种运动模式,如双足行走、多足行走、蛇形滑步、尺蠖蠕动步态、直线波动和侧弯步态等,可以攀爬楼梯、电线杆、管道、坡道等. 每个模块配备了多种传感器,如力-转矩传感器、触觉传感器和红外接近传感器. 模块对接时,一个模块的销穿过相邻模块的孔,由形状记忆合金驱动弹簧锁定机构,将销锁定在合适的位置.

  • Transmote模块[28]设计与PolyBbot相似,它由铝制框架支撑模块主体,每个模块具有三个自由度,如图2(d)所示. 每个关节可以旋转90°,可以在没有任何外部帮助的情况下运动以及改变移动方向. 壳体上有7组对接孔,用于与其他模块进行机械连接. 单个Transmote模块通过协调两端关节实现尺蠖爬行运动步态. 两个振荡器用于生成电机命令的步态表和周期参数. 该模块还可以通过弯曲中间关节和交替抬高两端关节实现独特的横向运动.

  • 1.3 桁架式

  • 与基于晶格或链的系统不同,基于桁架设计的系统不需要在立方体或任何规则晶格上运行. 大多数正在开发的桁架系统采用可伸缩杆以实现结构形状变形或拓扑变形.

  • Odin机器人[32]是一种基于桁架结构的模块化机器人. 如图2(e)所示,Odin模块采用连杆和关节结构,主要由可伸缩连杆和球形连接器组成. 该圆柱形连杆是主动且刚性的,由嵌入机体内的电机驱动伸缩. 每个球形关节接头有12个连接器插座,连接相邻连杆,使机器人能够通过主动伸缩在三维空间中变形. 这些关节也充当连杆中控制器之间的电源共享和通信接口. 但是该模块不能自动对接,需要手动调整安装.

  • VTT[47]是由Yim团队开发的基于桁架的模块化机器人,称为可变拓扑结构的桁架系统,如图2(f)所示.它由主动移动关节和被动链式球形接头组成. 它可以通过合并或拆分接头来改变其拓扑结构,从而实现自重构. 两个独立的接头可以对接,形成一个单独的接头. 类似地,连接多个主动移动关节的接头可以分离变成多个接头. 因此,VTT不仅可以通过改变相应成员的长度来改变形状实现几何重构,还可以通过拓扑重构来改变成员之间的连通性,从而完成自重构.

  • 1.4 混合式

  • 混合架构的模块化机器人通常结合了晶格式和链式架构的优势,既能按照晶格式系统的自重构方式对接和分离,同时又能像链式架构一样到达连续空间中的任何点.

  • M-TRAN[344651]机器人是Murata等开发设计的一种基于晶格与链式混合的可重构机器人(图2(g)). 每个模块由两个半圆柱体组成,半圆柱体间通过电机驱动的旋转关节连接形成链式结构. 当与其他模块对接时,类似于晶格式系统,每个模块占据空间中的一个离散位置,相比于在空间任意连续位置对接,离散位置有助于模块之间对齐. M-TRAN模块配备了传感器、通信装置和独立的计算单元,可以通过自重构实现多种运动模式. 研究者一开始利用永磁体进行模块连接,后来改进为更可靠的机械连接. M-TRAN的控制策略也在不断演变发展,研究者分别提出了通过上位机控制实现自重构,通过同步控制和中枢模式发生器两种方法获得最优的运动步态,以及通过同步或异步分布式控制方法来实现关节的自适应运动,因而具有优越的自重构和运动能力,可以实现从四足机器人到蛇形机器人的构型切换和多模态运动.

  • SMORES系列[52-54]模块化机器人是Yim团队开发的混合式模块化可重构机器人(图2(h)),融合了链式、晶格式、自由式三种架构. 每个模块宽80mm,由一个单独的半圆柱形立方体组成. 模块的三个侧面装有圆盘,可作为运动轮和模块之间的旋转关节. 模块间采用磁性连接,每个面装有4个磁铁,极性交替排布. SMORES模块左右圆盘作为车轮时模块可以在平坦的路面上行驶. 同时该机器人还具有一个感知单元模块,该模块装载了RGB-D深度相机、高性能处理器和电池等. 因此,SMORES模块化机器人可以进行环境感知,并将环境信息发布给各个单元模块,实现地图构建、定位、导航和识别等功能. 该机器人的自主化程度在目前小型模块化机器人中处于领先水平.

  • 1.5 自由式

  • 除了基于晶格、链、桁架与混合的模块化机器人系统,一些研究者也开发出了基于自由式架构的模块化机器人. 自由式架构使得模块可以更灵活地移动到半随机位置.

  • Kirby等人研发了一种称为Catoms的自由式模块化机器人[38](图2(i)),每个模块为直径45mm的圆柱体,24块电磁铁均匀分布在圆柱体的四周. 电磁铁的作用是驱动模块运动和连接模块,并为模块之间的电力和数据传输提供锚点. 在控制磁铁的启用和禁用过程中,每次仅驱动模块上的一块电磁铁,使得一个模块可以围绕作为枢轴的静止相邻模块旋转. 这样的驱动方式使得Catoms的运动相比晶格式或其他构型的机器人更加快速. 但是目前Catoms机器人的运动还只能限制在二维平面内.

  • Slimebot[5549]是另一种类似于Catoms结构的自由式模块化机器人(图2(j)). 不同的是,模块之间并非磁性连接,而是通过魔术贴结合,当所施加的力足够大时,两模块分离. 每个模块配备具有全方位移动能力的脚轮,通过自身携带的气缸伸缩底部的摩擦片,使得不同模块与地面产生不同的摩擦力,低摩擦力的模块称为主动模块,高摩擦力的模块称为被动模块. Slimebot的控制策略是利用一种局部相互作用的非线性振荡器产生相位梯度,控制每个模块的主被动模式交替,从而产生有节奏和连贯的运动.

  • 2 构型描述与运动学建模

  • 由于模块化可重构机器人类型多样,能够改变形状和拓扑结构,将机器人构型用抽象形式完整描述对于机器人建模是十分有益的. 另外,模块化机器人的运动学是研究动力学的基础. 因此,本节首先简单介绍模块化机器人的构型描述(图与矩阵),然后对模块化机器人的运动学建模方法进行了简要概述.

  • 2.1 构型描述

  • 模块化机器人的每个模块可以视为一个连杆,相邻模块之间的连接器可以视为一个关节,因此一般的模块化机器人本质上是连杆和关节的集合. 在机械设计中,连杆和关节的组合可以用图进行表示. 由于一个关节通常只能连接两个连杆,而一个连杆可以安装多个关节,因此,将关节用边代替,将连杆用点代替,机器人的结构可以用图来表示. 这种图被称为运动学图[57],它可以直观地表示模块化机器人的构型. 图3表示的是串联式模块化机器人构型的有向树图.

  • 图3 串联式模块化机器人构型有向树[56]

  • Fig.3 Directed trees of serial modular robot configuration[56]

  • 尽管图可以表示机器人构型,但是不便于计算机处理,因此可以进一步抽象为矩阵表示. 依据图的信息,遵循一定的对应规则[57],我们可以计算出邻接矩阵(Adjacency Matrix)、关联矩阵(Incidence Matrix)、可达矩阵(Accessibility Matrix)、路径矩阵(Path Matrix)、拓展关联矩阵(Extended Incidence Matrix)以及装配关联矩阵(Assembly Incidence Matrix,AIM)等. 这些矩阵描述了机器人的构型与结构特点,其中装配关联矩阵可以完全表示模块化机器人的装配构型,它包含了模块之间的连接以及装配信息,如连接插座相对于模块的位置和相对装配方向. AIM以紧凑的矩阵形式完整描述了模块化机器人的装配构型,是后续建模以及其他相关研究的前提和基础.

  • 2.2 运动学建模

  • 由于可重构机器人的模块绝大多数是刚性的,因此运动学分析很少针对单模块开展,而是对模块组合后的整体进行研究. 基于机器人连杆和关节的几何关系,常用的运动学建模方法包括D-H法[8]、指数乘积(POE)公式[9]、螺旋坐标法、零参考位置法[58]等. 其中,D-H法和POE公式应用最为广泛.

  • D-H法使用齐次变换矩阵来描述相邻连杆之间的空间关系,它的参数取决于机器人构型. 同一个机器人可能会因为初始构型不同而具有不同的D-H参数集. 因此D-H法通常应用于固定构型的传统机器人. Zhou等人[59]设计了一种模块化可重构工业机器人,基于D-H法对一个特定构型求得运动学正解,同时利用几何法和代数法求出了解析形式的运动学逆解. Thakker等人[60]设计了一种可以在蛇形和双足间切换的模块化机器人,基于D-H法分析了它的前向运动学,并给出了四个关节的逆运动学解. Tang等人[61]提出了一种模块化欠驱动多手指机械爪,基于D-H法建立了机械爪的数学模型,并对其进行了正运动学分析和工作空间计算.

  • 基于POE公式的运动学建模避免了关节类型的区分,提供了空间机构正运动学的通用和统一表示. 同时,POE公式使用了螺旋坐标法,可以对刚体运动进行全局描述,不会受到奇异点的影响. 由于这些优点,POE公式被证明是一种更强大、更方便的模块化可重构机器人建模方法. POE公式形如:

  • T0,nq1,q2,,qn=es^1q1es^2q2es^nqnT0,n(0)
    (1)
  • 其中qi表示关节i的位移,T0,nq1q2,···,qn)表示连杆n相对连杆0(基坐标系)的位姿,s^i表示第i个关节的运动旋量,T0,n(0)为初始时刻的连杆n相对连杆0的位姿. Li等人[62] 针对一个六自由度的模块化机构采用POE公式建立其正运动学模型,并基于Paden-Kahan子问题进行了逆运动学分析. Yun等人[63]研发了一种称为ModMan的可重构机械手,并提供了基于POE的自动运动学建模方法. Yang等人[64]设计了一种六自由度3RPRS模块化并联机械臂,并基于POE公式给出了正向运动学.

  • 由于模块化机器人的自重构性,针对不同构型的通用自动运动学建模方法吸引了研究者的关注. Khosla等人[65]提出了基于D-H法的可重构机械臂正运动学生成方法,但此方法局限于旋转关节. Khosla等人也给出了串联型模块化机器人的数值逆运动学算法,该算法不依赖于模块数量和类型[65]. Choi等人[66]提出利用三个向量定义模块化机器人DH参数的方法. 该方法适用于任何模块化的机械结构,通过得到每个模块的DH参数并将不同模块参数按顺序相加,就可以得到给定构型的完整DH参数集. Chen等人[67]提出了一种基于POE公式的自动建模方法,并给出了逆运动学的数值求解方法[68],适用于串联和树形结构的模块化机器人正、逆运动学的自动求解. 另外,Chen等人[69]也提出一种采用POE公式求逆运动学封闭形式解的方法,该方法对四自由度以内的机器人完全有效,但对于部分更高自由度的机器人未必适用. Yang等人[70]提出了一种系统化的模块化机器人运动学建模方案,可以自动生成具有树形结构的模块化机器人的逆运动学模型. 该方案使用了机器人的路径矩阵来辅助逆运动学模型的构建,得到的微分形式的逆运动学模型可以通过牛顿-拉夫森迭代方法数值求解.

  • 总的来说,D-H法利用齐次变换矩阵描述模块的位姿,虽然直观且清晰易懂,但需要添加中间参考坐标系,且难以灵活适应机器人重构. 而基于旋量表示的POE公式建模尽管入门门槛高,但形式紧凑优美,不需要中间参考坐标系,结果统一,便于机器人重构后重新自动建模. 因此POE公式是目前更受研究者青睐的标准、通用的模块化机器人运动学描述方法. 在未来,对并联、串并联混合以及柔顺结构的模块化机器人运动学建模值得进一步研究.

  • 3 模块化机器人动力学分析

  • 由于模块化机器人的构型是不固定的,其动力学模型会随着模块数量和构型的改变而变化,人工推导每一种几何构型的动力学模型是不切实际的,因此,研究模块化可重构机器人的动力学模型自动生成方法是有必要的. 另外,模块连接结合面的力学特性影响了机器人系统整体的刚度,但目前很少有研究关注结合面和对接机构的力学特性. 此外,模块化可重构机器人的动力学模型也是控制器设计的基础. 因此,本节对模块化可重构机器人系统整体动力学建模、结合面及对接机构建模以及基于动力学模型的控制方法进行综述.

  • 3.1 系统整体动力学建模

  • 模块化机器人动力学包含正向和逆向两个问题. 正动力学问题为在已知初始关节角和速度以及已给定驱动力/力矩的条件下,预测机器人的运动,通常用于机器人仿真和行为预测. 逆动力学问题则是求出产生各关节运动轨迹所需的驱动力/力矩,主要用于机器人的控制和运动规划. 许多经典的动力学方法如牛顿-欧拉(N-E)法、拉格朗日-欧拉(L-E)法、凯恩方法、有限元法、广义D-Alembert方法等可以用来解决这两个问题. 其中,L-E法和N-E法的应用最为广泛.

  • 通过L-E法推导机器人动力学模型时,将模块化可重构机器人系统视为一个整体,考虑这个整体系统的能量特性. 选取第i个关节变量为广义坐标,拉格朗日方程如下:

  • ddtLq˙i-Lqi=τi
    (2)
  • 其中L表示系统动能与势能的差,qiq˙i分别表示广义坐标和广义速度,τi表示关节i上的反作用力矩. 该方法常被用于控制设计,用来研究和分析机器人系统的动力学特性. 基于L-E法得到的动力学方程是二阶耦合非线性微分方程组. 每个方程都包含力矩或力项,如由其他关节加速度产生的反作用力矩/力、由速度产生的关节之间的科氏力和离心力以及由连杆上的重力载荷产生的力矩/力等[57]. 为了提高计算速度,一般对模型进行近似,通过忽略二阶非线性项来简化方程,但这也会导致控制精度的降低.Wang等人[71]采用L-E法对一个由两自由度非完整约束的移动平台和搭载的五自由度模块化机械臂组成的系统(图4(a))进行了动力学建模,其控制方程如下:

  • Iqeq¨e+Cqe,q˙eq˙e+Gqe=Eτ+E/F-ATλAq˙m=0
    (3)
  • 其中,qe为包含了移动平台坐标qm和操作臂关节变量{q1q2q3q4q5}的广义坐标矢量,Iqe)表示非奇异对称惯性矩阵,Cqeq˙e是包含离心力、科氏力和黏性摩擦的向量,Gqe)表示重力项,E是将驱动力矩τ映射为关节力矩的矩阵,E2表示将任务空间F映射到关节空间的矩阵,AT表示移动平台非完整约束的约束矩阵. Li等人[72]基于关节参数和机器人构型,基于L-E法和凯恩方法建立了四自由度模块化工业机器人(图4(b))的动力学模型,也采用凯恩法建立了五自由度和七自由度可重构机械臂的动力学模型[7374]. Dixit等人[75]基于L-E法建立了由三种异构模块组成的模块化机器人(图4(c))的动力学模型,并开展了相应的动力学分析.

  • 图4 模块化机器人基于拉格朗日法动力学建模研究[717275]

  • Fig.4 Research of dynamic modeling for modular robots based on the Lagrangian method[71, 72, 75]

  • 另外,N-E法由于计算速度快和控制精度高等优点,在模块化可重构机器人领域也获得了广泛的应用. N-E迭代算法包含正向和逆向递归两个过程. 正向递归将运动学信息从基坐标系传递到末端执行器坐标系,而逆向递归则将施加在每个连杆上的力和力矩从末端执行器坐标系传递到基坐标系. 由N-E法导出的动力学方程为实现实时控制提供了可能. Mahkam等人[76]针对所设计的具有软连接的腿式模块化微型机器人SMoLBot(图5(a)),提出了动力学建模和分析框架. 通过将柔性骨架建模为扭转弹簧阻尼器,建立了包含n条腿的模块化机器人系统的一般化牛顿-欧拉动力学模型. Yao等人[77]研究了一种新颖的基于折纸(origami)技术的模块化机器人自重构方式(图5(b)),设计了模块化折纸机器人Mori平台,并利用递推牛顿-欧拉公式推导了机器人的关节动力学. Wang等人[78]针对M2rBot模块化机器人采用递归N-E公式自动建立其动力学模型. 针对桁架式高冗余度模块化并联机器人Tetrobot,Lee等人[79]利用牛顿法建立了动力学模型. Pettersen等人[80]则采用N-E公式对模块化蛇形机器人进行了动力学建模,其中机器人与地面的接触被建模为质量-弹簧-阻尼系统(图5(c)).

  • (c)模块化蛇形机器人与地面的接触力建模

  • (c) Modeling of contact forces between modular snake-like robots and the ground

  • 图5 模块化机器人基于牛顿-欧拉法动力学建模研究[767780]

  • Fig.5 Research of dynamic modeling for modular robots based on the Newton-Euler method[76, 77, 80]

  • 使用动力学方程的几何形式是机器人动力学研究的新趋势. 将刚体运动的特殊欧几里得群SE(3)视为李群,可以避免传统动力学算法中许多特定的定义和标记. Park等人[81]提出了一种结合递归 N-E动力学与李群和李代数数学运算的机器人动力学建模方法,该算法完全用无坐标的李代数运算来表示动力学,并提供了基于李代数的封闭形式的拉格朗日动力学. 特别地,动力学方程的描述基于六维向量(由一对三维向量组成,例如线速度与角速度、力与力矩),该理论也称为螺旋理论,其减少了方程的数量,同时有助于转化成计算机程序. Chen等人[70]提出一种可以从给定的AIM自动生成模块化机器人动力学模型的方法,该方法基于修改后的递归N-E算法和可达矩阵构建一般树形结构模块化机器人的动力学模型. 模型中的广义速度、广义加速度和广义力通过 se(3)上的线性运算表示,其计算表达式为:

  • V=HS˙q˙
    (4)
  • V˙=HT0V˙0+HSq¨+HA1V
    (5)
  • F=HTFE+HTMV˙+HTA2MV
    (6)
  • τ=STF
    (7)
  • 其中V是广义速度,V˙是广义加速度,F是扭矩,τ是所施加的关节扭矩/力,q˙是关节速度,q¨是关节加速度,V˙0是基准连杆的广义加速度,S是表达在连杆坐标系中的关节扭转矩阵,M是总广义质量阵,FE是外部扭矩,A1A2分别是由广义速度和旋量对应的伴随矩阵中的元素组成的矩阵,HTnH是由齐次变换矩阵的伴随矩阵中的元素组成的矩阵[72]. 公式(4)~公式(6)代入公式(7),可以得到封闭形式的树形结构模块化机器人的动力学方程:

  • M(q)q¨+C(q,q˙)+N(q)=τ
    (8)
  • 其中

  • M(q)=STHTMHSC(q,q˙)=STHTMHA1+A2MHSN(q)=STHTMHT0V˙0+STHTFE
    (9)
  • Mq是机器人的广义质量矩阵,Cqq˙是科氏力和离心力项,Nq表示作用在关节处的重力和外力,τ表示驱动力矩/力. 然而,该方法仅对具有简单串联或树形结构的构型有效. 当构型包含闭环运动链时,必须考虑模块连接的约束,并且由于大量的中间变量,模型的解变得很复杂.

  • 除了L-E法、N-E法和基于螺旋理论的自动建模方法之外,一些研究者还提供了其他的有效自动建模方法. Gruver等人[64]提出了一种特定有限元方法,将每个关节和连杆视为一个单元,通过组合每个单元的子模型来获得整体结构的动力学模型. 该方法适用于任何具有串联、并联或混合结构的模块化机器人构型. Fei等人[82]提出了一种自动生成模块化可重构机器人动力学模型的方法,采用群论分析了模块化可重构机器人的抽象结构,通过补偿和递归的方法自动生成每个模块的动力学方程,并且在Windows 环境下开发了各种代码用于动力学仿真. Nainer等人[83]针对模块化可重构机械臂提出了一种通用的自动生成动力学模型的方法,该研究基于标准D-H法、修改的D-H法、POE以及统一的机器人描述格式(URDF)分别给出了相应的动力学模型. Zhang等人[84]提出了一种基于空间算子代数(SOA)的高效动力学建模方法,提高了模块化空间机械臂动力学建模的效率. Whitman等人[11]通过图神经网络学习形成近似的前向动力学模型,该方法适用于任意结构设计的模块化机器人,是自动建模的新思路.

  • 针对结构设计较为特殊的模块化机器人,研究者给出了具有针对性的动力学建模和特性分析方法. Aoi等人[85]分析了多足模块化机器人的动力学特性,特别是运动方式的跃迁. 研究发现,在没有任何振荡输入的情况下,改变模块间关节的顺应性可以触发Hopf分岔,从而将直线行走自然地演变为蜿蜒行走. Nielsen等人[86]研究了一种水下模块化机器人自动化建模方法,首先建立了单个水下机器人模块的动力学模型,并基于多体动力学的Udwadia-Kalaba公式以及由模块间的拓扑关系导出的约束条件,得到了模块化水下机器人集群整体的动力学模型. Tzvi等人[87]设计了一种微型模块化尺蠖机器人,利用机器人各向异性摩擦特性实现向前运动和转向,并基于分段库仑摩擦定律对静态锚固和动态滑动的摩擦力进行建模,最后给出了由相互连接的两模块组成的系统的动力学模型. Fei等人[88]设计了一种模块化软体机器人,它由多个可充放气改变大小的球胞组成,能够实现在狭窄复杂的通道中移动. 该研究给出了单球胞膨胀半径与充气时间的非线性模型,并分析了三球胞组成的系统的前向运动过程. Plitea等人[89]利用虚功原理建立了一种自由度模块化并联机器人解析形式的逆动力学模型,通过输入机器人末端执行器的三维运动轨迹、逆运动学模型以及机器人各单元的质量,可以快速计算输出执行器的力/力矩.

  • 3.2 结合面以及对接机构建模

  • 模块化机器人是由多个模块组合连接而成,结合面以及对接机构的强度、刚度等力学特性将会对机器人系统整体特性产生显著影响. 因此,需要对相邻模块之间的结合面以及对接机构进行建模.

  • 图6 关节面的动力学建模研究[9095]

  • Fig.6 Research on dynamic modeling of joint surfaces[90, 95]

  • 结合面的建模方法可以分成宏观和微观两类[56]. 宏观方法通常将结合面建模为弹簧阻尼系统,刚度和阻尼等参数通过理论计算或参数辨识得到[90]. 微观方法通过分析结合面变形的物理机制和阻尼特性来建立结合面模型. 常用的微观分析方法包括分形理论[91]、Hertz接触理论、有限元等,经典的结合面模型包括MB模型[92]、GW模型[93]、Cantor模型[94]等. 吴文强等人[56]考虑了施加在末端执行器上的外力、模块重力和结合面上的预紧力,建立了结合面的静力模型,同时基于分形理论,分别建立了在均匀和非均匀载荷情况下结合面的切向和法向接触模型,这对研究模块化机器人由于刚度不足引起的几何误差具有重要作用. 刘晓平等人[90]在模块结合面使用弹簧阻尼元件等效,采用模糊优化方法辨识了关节面等效动力学参数,并采用有限元方法结合辨识得到的参数建立了机器人(图6(a))动力学模型.

  • 对接机构的建模主要关注关节的摩擦和柔性,对接的接触力和所需要的驱动力,以及对接机构的刚度等. Gao等人[95]研究了使用谐波减速器的模块化机器人柔性关节的动力学建模,并建立考虑了摩擦和柔性的关节模型(图6(b)).根据接头特性,将其分为高速侧和低速侧. 针对高速侧和低速侧复杂的摩擦特性,建立了基于静态、库仑和Stribeck摩擦的混合摩擦模型,并以速度作为混合摩擦模型的切换条件,同时采用线性弹簧模型建立关节的柔性模型. 将摩擦模型与柔性模型代入所建立的关节动力学模型:

  • Jhθ¨h+Thf+T=U
    (10)
  • J1θ¨1+Tlf+G=NT
    (11)
  • 其中θh是高速侧输出的角位移,θ1是低速侧输出的角位移,JhJ1分别是高速侧和低速侧的转动惯量,Thf是高速侧的摩擦力矩,Tlf是低速侧的摩擦力矩,T是柔性引起的扭矩,U是电机输出扭矩,G是载荷项,N为传动比. 该方法考虑了具有谐波减速器的柔性关节摩擦和柔性因素,而未将其他非线性因素如迟滞、运动误差等纳入考虑,非线性因素的辨识与补偿也有待进一步研究. Moubarak等人[57]提出了一种新型主动连接机构,实现了模块化移动机器人之间的刚性、可逆的链式耦合,并对该机构进行了动力学分析,仿真和实验结果验证了对接机构的刚度. Zhang等人[96]提出了一种新型对接系统,该系统的连接和断开由运动驱动器驱动,不需要单独的对接驱动器,从而减少了模块的重量和复杂性. 通过开展对接力分析,确定了主动连接模块所需要的最小推力. Fei等人[97] 提出了面对面关联矩阵(FFIM)来描述基于晶格的自重构模块化机器人模块之间的关系,用几何方法分析了对接的状态和模块间的约束,并描述了对接的接触力. Qiao等人[98]针对所提出的链式模块化机器人采用的销孔对接机构进行了应力分析,结果表明机构有足够的连接强度,可以承受20个模块的重量.

  • 部分研究还基于动力学模型进行对接位置求解与路径规划. Zhang等人[99]设计并制造了一种采用新型连接机构实现对接的气动软模块机器人,通过结合neo-Hookean理论和Cosserat杆理论建立了该软模块的非线性动力学模型,并基于该动力学模型计算出了模块上任意点位置坐标随气体压力变化的解析解,并利用它实现对接控制. Wei等人[100]针对自组装轮式移动机器人的对接导航问题,提出了一种基于动力学的路径规划方法,并在模块化机器人Sambot上验证了所提方法的有效性.

  • 3.3 基于动力学模型的控制方法

  • 一些结构相对简单、非工业应用的模块化可重构机器人,如前面所介绍的晶格式模块化机器人,由于对控制精度的要求较低,其控制方法一般仅基于步态表或运动学模型. 少数的晶格式模块化机器人如3D M-Blocks分析了单模块的动力学模型,从而确定模块内部的惯性驱动器需要提供多大扭矩才能使得模块移动到相邻离散位置. 基于动力学模型的控制方法常用于对鲁棒性、稳定性和控制精度要求较高的模块化可重构机械臂. Zhu等人[101]利用嵌入式现场可编程门阵列(FPGA)逻辑器件的虚拟分解控制方法,提出了一种不采用关节力矩传感的控制方案,实现了模块化机器人精密控制,相比现有的使用谐波驱动器的模块化机器人控制精度提高了一个数量级. Nainer等人[102]利用带区间运算的递归牛顿-欧拉公式,提出了一种自动生成模块化可重构机械臂鲁棒控制器的方案,并通过分析被控转矩信号的功率谱密度,在线调节控制参数,在避免抖振影响的同时提高了跟踪和抗冲击性能. 该控制方法不需要人为干预,可以自动适应机器人重构. 针对串联模块化可重构机械臂,Giusti等人[103]基于由N-E法推导的动力学模型,设计了一种中心式控制器,该控制器收集预先存储好的每个模块的运动学与动力学参数,然后自动生成两种基于模型的控制律:带重力补偿的比例微分(PD)控制和计算转矩控制. Melek等人[13]利用比例-积分-微分参数模糊增益整定的方法进行自适应控制,并提出使用前馈神经网络的学习控制来补偿未建模的系统动力学,实现了在不需要先验动力学参数情况下模块化机器人精确的位置控制,有效解决了动力学参数不确定和未建模干扰的问题,同时,该方法在机器人重构后能够自动更新自适应控制参数. Wang等人[78]基于由递归N-E法建立的动力学模型,设计了一种模糊鲁棒自适应控制器,可以在不调整任何控制参数的情况下快速适应模块化机器人构型变化并保证跟踪性能. Liu等人[104]提出了一种模块化可重构机器人的分布式控制技术,其基于关节力矩传感,可以在不调整机器人其他模块控制参数的情况下快速适应机器人构型重构. 该控制技术还可以利用关节力矩传感器来补偿连杆和载荷质量相关的模型不确定性,并采用基于分解的鲁棒控制器补偿剩余的模型不确定性,包括动态耦合和关节摩擦等.

  • 4 若干值得关注的问题

  • 上述综述表明,随着对模块化可重构机器人鲁棒性、稳定性和控制精度需求的不断提升,迫切需要建立模块化机器人的动力学模型,并开展基于动力学模型的控制. 目前,模块化机器人的动力学研究正处于快速发展阶段,还有许多问题亟须深入探索. 以下,列举出值得关注的若干问题.

  • (1)针对存在闭环结构或串并联混合结构的模块化可重构机器人,提出相应的动力学模型自动生成方法. 目前针对串联和树形结构的模块化可重构机器人,常采用的建模方法包括常规的L-E法、N-E法或螺旋理论与N-E法结合的自动建模方法.但这些方法对存在闭环和并联机构的模块化可重构机器人的有效性还没有被证实,闭环结构需要考虑模块连接的约束.

  • (2)针对软体模块化机器人,首先确定材料的本构关系,并建立多模块系统的整体动力学模型. 模块的本构关系不清晰,动力学模型就难以建立. 本构方程的建立是动力学建模的基础. 另外,目前软体机器人研究动力学建模主要针对单个机器人模块而言,其力学模型包括有限元模型、连续介质力学模型、几何关系模型(如常曲率和分段常曲率模型)以及离散材料模型等,但多模块组合的软体机器人系统动力学很少被分析,建立系统整体的动力学模型对于机器人运动分析以及控制具有指导意义.

  • (3)针对已有理论模型而动力学参数难以准确测量的情况,例如具有柔性的谐波驱动器驱动关节运动的模块化机器人,应研究动力学参数辨识方法,来辨识关节处刚度、摩擦系数等动力学参数,从而获得精确的动力学模型.

  • (4)针对复杂、难以准确建模的模块化可重构机器人,建立其模糊动力学模型,并实施模糊自适应控制. 机器人难以准确建模的原因可能包括存在未纳入模型的外界扰动、模型参数的不确定性、负载的变化等.不准确的动力学模型可能影响系统的稳定性和控制的有效性.因此,研究模块化可重构机器人的模糊动力学建模方法并开展模糊自适应控制具有重要意义.

  • (5)针对第一性原理难以建模的机器人系统,采用数据驱动建模或深度神经网络学习模型等方法近似机器人的动力学模型. 建立的动力学模型不仅需要包含模块化机器人惯性、弹性和阻尼等因素,还需要具备处理摩擦、碰撞、外界扰动等问题的能力,同时要保持较高的计算效率,服务于实时的构型变化.

  • (6)针对基于折纸结构的模块化可重构机器人,提出考虑折纸结构运动学和动力学的机器人自动建模方法. 模块化折纸结构机器人是当前可重构机器人领域的研究前沿和热点,折纸结构的变拓扑、变大小、变形状和变刚度等特点,给模块化机器人的设计提供了新的灵感. 需关注如何利用折纸结构多稳态切换等动力学特性来辅助模块化机器人的自重构,以及如何对具有大变形特征的折纸机器人系统进行动力学建模.

  • (7)针对模块化可重构机器人的动力学模型自动生成算法,开发一个可交互的具备丰富的模块和关节类型库的软件仿真平台. 输入机器人模块数量、类型、几何和物理参数,可以自动模拟出机器人的多种构型与运动模式,并可以自动生成相应构型的动力学模型.

  • 5 结论

  • 近年来,模块化可重构机器人引起了学术界和工程界的广泛关注,其理论和应用研究发展十分迅速. 由于具备变构型特性,一些模块化机器人可以切换运动模态,从而适应复杂多变的环境,完成不同的作业任务. 机器人的构型切换、模块对接与解开、多模态运动或作业等动作本质上都属于动力学过程. 因此,开展动力学研究是提升模块化可重构机器人稳定性,拓展其工程应用的必由之路,也是实现模块化可重构机器人高精度控制的重要基础.

  • 本文对模块化可重构机器人的动力学研究进行了综述. 为保证文章的可读性和完整性,首先概述了模块化可重构机器人的构型分类以及每种构型的代表性机器人设计. 随后,介绍了模块化可重构机器人构型的抽象描述与运动学建模方面的研究进展. 然后,我们对模块化机器人的动力学研究进行了系统回顾,从系统整体动力学建模,结合面和对接机构建模,以及基于动力学模型的控制方法三个方面介绍了相关研究进展. 本文最后指出了模块化可重构机器人动力学领域若干值得关注的问题. 在未来研究中,随着新型模块化可重构机器人设计的涌现,以及机器人功能和应用场景的拓宽,迫切需要更准确的动力学模型来预测机器人的行为并指导控制. 因此,模块化可重构机器人可以作为机器人前沿技术与动力学学科结合的理想平台,一方面为动力学与控制学科带来全新的研究对象和研究问题,另一方面也为机器人的工程应用提供有效的解决方案.

  • 参考文献

    • [1] ZHU Y,ZHAO J,CUI X,et al.Design and implementation of UBot:a modular self-reconfigurable robot [C].2013 IEEE International Conference on Mechatronics and Automation,IEEE ICMA 2013,2013:1217-1222.

    • [2] SPRÖWITZ A,POUYA S,BONARDI S,et al.Roombots:reconfigurable robots for adaptive furniture [J].IEEE Computational Intelligence Magazine,2010,5(3):20-32.

    • [3] SPRÖWITZ A,MOECKEL R,VESPIGNANI M,et al.Roombots:a hardware perspective on 3D self-reconfiguration and locomotion with a homogeneous modular robot [J].Robotics and Autonomous Systems,2014,62(7):1016-1033.

    • [4] HAUSER S,MUTLU M,LÉZIART P A,et al.Roombots extended:Challenges in the next generation of self-reconfigurable modular robots and their application in adaptive and assistive furniture [J].Robotics and Autonomous Systems,2020,127:103467.

    • [5] DORIGO M.Swarm-bot:an experiment in swarm robotics [C].Proceedings-2005 IEEE Swarm Intelligence Symposium,SIS 2005,2005:192-200.

    • [6] MONDADA F,PETTINARO G C,GUIGNARD A,et al.Swarm-bot:a new distributed robotic concept [J].Autonomous Robots,2004,17(2-3):193-221.

    • [7] LIOW L,CLARK A B,ROJAS N.OLYMPIC:a modular,tendon-driven prosthetic hand with novel finger and wrist coupling mechanisms [J].IEEE Robotics and Automation Letters,2020,5(2):299-306.

    • [8] DENAVIT J,HARTENBERG R S.A kinematic notation for lower-pair mechanisms based on matrices [J].Journal of Applied Mechanics,1955,22(2):215-221.

    • [9] BROCKETT R W.Robotic manipulators and the product of exponentials formula [J].Mathematical Theory of Networks and Systems,1984:120-129.

    • [10] VLADAREANU L,TONT G,ION I,et al.Fuzzy dynamic modeling for walking modular robot control [C].Proceedings of the 9th WSEAS International Conference on Applications of Electrical Engineering,2010:163-170.

    • [11] WHITMAN J,TRAVERS M,CHOSET H.Learning modular robot control policies [J].2021:1-19.

    • [12] GIUSTI A,ALTHOFF M.On-the-Fly control design of modular robot manipulators [J].IEEE Transactions on Control Systems Technology,2018,26(4):1484-1491.

    • [13] MELEK W W,GOLDENBERG A A.Neurofuzzy control of modular and reconfigurable robots [J].IEEE/ASME Transactions on Mechatronics,2003,8(3):381-389.

    • [14] RÜCKERT P,ADAM J,PAPENBERG B,et al.Calibration of a modular assembly system for personalized and adaptive human robot collaboration [J].Procedia CIRP,2018,76:199-204.

    • [15] CHEN I M.A novel kinematic calibration algorithm for reconfigurable robotic systems [C].Proceedings of International Conference on Robotics and Automation,1997:3197-3202.

    • [16] LIU S B,ALTHOFF M.Optimizing performance in automation through modular robots [C].Proceedings-IEEE International Conference on Robotics and Automation,2020:4044-4050.

    • [17] WU W,GUAN Y,YANG Y,et al.Multi-objective configuration optimization of assembly-level reconfigurable modular robots [C].2016 IEEE International Conference on Information and Automation,IEEE ICIA 2016,2017:528-533.

    • [18] MARBACH D,IJSPEERT A J.Online optimization of modular robot locomotion [C].IEEE International Conference on Mechatronics and Automation,ICMA 2005,2005:248-253.

    • [19] YANG G,CHEN I M.Task-based optimization of modular robot configurations:minimized degree-of-freedom approach [J].Mechanism and Machine Theory,2000,35(4):517-540.

    • [20] MOUBARAK P,BEN-TZVI P.Modular and reconfigurable mobile robotics [J].Robotics and Autonomous Systems,2012,60(12):1648-1663.

    • [21] CHENNAREDDY S S R,AGRAWAL A,KARUPPIAH A.Modular self-reconfigurable robotic systems:a survey on hardware architectures [J].Journal of Robotics,2017.

    • [22] ALATTAS R J,PATEL S,SOBH T M.Evolutionary modular robotics:survey and analysis [J].Journal of Intelligent and Robotic Systems:Theory and Applications,2019,95(3-4):815-828.

    • [23] ØSTERGAARD E H,KASSOW K,BECK R,et al.Design of the ATRON lattice-based self-reconfigurable robot [J].Autonomous Robots,2006,21(2):165-183.

    • [24] ROMANISHIN J W,GILPIN K,CLAICI S,et al.3D M-Blocks:self-reconfiguring robots capable of locomotion via pivoting in three dimensions [C].Proceedings-IEEE International Conference on Robotics and Automation,2015:1925-1932.

    • [25] SUH J W,HOMANS S B,YIM M.Telecubes:mechanical design of a module for self-reconfigurable robotics [C].Proceedings-IEEE International Conference on Robotics and Automation,2002,4:4095-4101.

    • [26] RUS D,VONA M.Physical implementation of the self-reconfiguring crystalline robot [C].Proceedings-IEEE International Conference on Robotics and Automation,2000,2:1726-1733.

    • [27] GRANDGIRARD J,POINSOT D,KRESPI L,et al.A modular self-reconfigurable bipartite robotic system:implementation and motion planning [J].Autonomous Robots,2001,10:23-40.

    • [28] QIAO G,SONG G,ZHANG J,et al.Design of transmote:a modular self-reconfigurable robot with versatile transformation capabilities [C].2012 IEEE International Conference on Robotics and Biomimetics,ROBIO 2012-Conference Digest,2012:1331-1336.

    • [29] YIM M,DUFF D G,ROUFAS K D.PolyBbot:a modular reconfigurable robot [C].Proceedings-IEEE International Conference on Robotics and Automation,2000,1:514-520.

    • [30] HIROSE S,SHIRASU T,FUKUSHIMA E F.Proposal for cooperative robot “Gunryu” composed of autonomous segments [J].Robotics and Autonomous Systems,1996,17(1-2):107-118.

    • [31] YIM M,SHIRMOHAMMADI B,SASTRA J,et al.Towards robotic self-reassembly after explosion [C].IEEE International Conference on Intelligent Robots and Systems,2007:2767-2772.

    • [32] LYDER A,GARCIA R F M,STOY K.Mechanical design of Odin,an extendable heterogeneous deformable modular robot [J].2008 IEEE/RSJ International Conference on Intelligent Robots and Systems,IROS,2008:883-888.

    • [33] YU C H,HALLER K,INGBER D,et al.Morpho:a self-deformable modular robot inspired by cellular structure [J].2008 IEEE/RSJ International Conference on Intelligent Robots and Systems,IROS,2008:3571-3578.

    • [34] KUROKAWA H,TOMITA K,KAMIMURA A,et al.Distributed self-reconfiguration of M-TRAN Ⅲ modular robotic system [J].International Journal of Robotics Research,2008,27(3-4):373-386.

    • [35] ZYKOV V,MYTILINAIOS E,DESNOYER M,et al.Evolved and designed self-reproducing modular robotics [J].IEEE Transactions on Robotics,2007,23(2):308-319.

    • [36] SHEN W M,KRIVOKON M,RUBENSTEIN M,et al.Multimode locomotion via self-reconfigurable robots [J].Autonomous Robots,2006,20(2):165-177.

    • [37] ZHU Y,ZHAO J,CUI X,et al.Design and implementation of UBot:a modular self-reconfigurable robot [C].2013 IEEE International Conference on Mechatronics and Automation,IEEE ICMA 2013,2013:1217-1222.

    • [38] KIRBY B,CAMPBELL J,AKSAK B,et al.Catoms:moving robots without moving parts [C].Proceedings of the National Conference on Artificial Intelligence,2005,4:1730-1731.

    • [39] BRANDT D,CHRISTENSEN D J,LUND H H.ATRON robots:versatility from self-reconfigurable modules [C].Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation,ICMA 2007,2007:26-32.

    • [40] JØRGENSEN M W,ØSTERGAARD E H,LUND H H.Modular ATRON:modules for a self-reconfigurable robot [C].2004 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS),2004,2:2068-2073.

    • [41] ROMANISHIN J W,GILPIN K,Rus D.M-blocks:momentum-driven,magnetic modular robots [C].IEEE International Conference on Intelligent Robots and Systems,2013:4288-4295.

    • [42] ROMANISHIN J W.M-Blocks:three dimensional modular self-reconfigurable robots [R].Massachusetts Institute of Technology,2018.

    • [43] YIM M,DUFF D G,ROUFAS K D.PolyBbot:a modular reconfigurable robot [C]//Proceedings-IEEE International Conference on Robotics and Automation.2000:514-520.

    • [44] YIM M,ZHANG Y,ROUFAS K,et al.Connecting and disconnecting for chain self-reconfiguration with PolyBbot [J].IEEE/ASME Transactions on Mechatronics,2002,7(4):442-451.

    • [45] MURATA S,YOSHIDA E,KAMIMURA A,et al.M-TRAN:self-reconfigurable modular robotic system [J].IEEE/ASME Transactions on Mechatronics,2002,7(4):431-441.

    • [46] KUROKAWA H,KAMIMURA A,YOSHIDA E,et al.M-TRAN Ⅱ:metamorphosis from a four-legged walker to a caterpillar [C].IEEE International Conference on Intelligent Robots and Systems,2003,3:2454-2459.

    • [47] SPINOS A,CARROLL D,KIENTZ T,et al.Variable topology truss:design and analysis [C].IEEE International Conference on Intelligent Robots and Systems,2017:2717-2722.

    • [48] LIU C,YU S,YIM M.Motion planning for variable topology truss modular robot [J].Robotics:Science and Systems,2020.

    • [49] SHIMIZU M,MORI T,ISHIGURO A.A development of a modular robot that enables adaptive reconfiguration [C].IEEE International Conference on Intelligent Robots and Systems,2006:174-179.

    • [50] CHRISTENSEN D J.Evolution of shape-changing and self-repairing control for the ATRON self-reconfigurable robot [C].Proceedings-IEEE International Conference on Robotics and Automation,2006:2539-2545.

    • [51] KAMIMURA A,KUROKAWA H,YOSHIDA E,et al.Distributed adaptive locomotion by a modular robotic system,M-TRAN Ⅱ-From local adaptation to global coodinated motion using CPG controllers [C].2004 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS),2004,3:2370-2377.

    • [52] LIU C,LIN Q,KIM H,et al.SMORES-EP,a modular robot with parallel self-assembly [J].2021.

    • [53] JING G,TOSUN T,YIM M,et al.An end-to-end system for accomplishing tasks with modular robots [J].Robotics:Science and Systems,2016,12.

    • [54] TOSUN T,DAUDELIN J,JING G,et al.Perception-informed autonomous environment augmentation with modular robots [C].Proceedings-IEEE International Conference on Robotics and Automation,2018:6818-6824.

    • [55] SHIMIZU M,ISHIGURO A,KAWAKATSU T.A modular robot that exploits a spontaneous connectivity control mechanism [C].2005 IEEE/RSJ International Conference on Intelligent Robots and Systems,IROS,2005(1):1899-1904.

    • [56] 吴文强.可重构模块化机器人建模、优化与控制[D].广州:华南理工大学,2013.WU W Q.Modeling,optimation and control of reconfigurable modular robot [D].Guangzhou:South China University of Technology,2013.(in Chinese)

    • [57] YANG G,CHEN I M.Modular robots:theory and practice [B].Springer Singapore,2022.

    • [58] GUPTA K C.Kinematic analysis of manipulators using the zero reference position description [J].The International Journal of Robotics Research,1986,5(2):5-13.

    • [59] 周冬冬,王国栋,肖聚亮等.新型模块化可重构机器人设计与运动学分析 [J].工程设计学报,2016,23(1):74-81.ZHOU D D,WANG G D,XIAO J L,et al.Design and kinematics anslysis of new modular reconfigurable robot [J].Chinese Journal of Engineering Design,2016,23(1):74-81.(in Chinese)

    • [60] THAKKER R,KAMAT A,BHARAMBE S,et al.ReBiS-reconfigurable bipedal snake robot [C].IEEE International Conference on Intelligent Robots and Systems,2014:309-314.

    • [61] TANG S,YU Y,LIANG W.Structural design and optimization of modular underactuated multi-fingered manipulator [C].Proceedings of 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference,ITOEC 2018,2018:1028-1036.

    • [62] LI Y,ZHU S,WANG Z,et al.The kinematics analysis of a novel self-reconfigurable modular robot based on screw theory [J].DEStech Transactions on Engineering and Technology Research,2016.

    • [63] YUN A,MOON D,HA J,et al.ModMan:an advanced reconfigurable manipulator system with genderless connector and automatic kinematic modeling algorithm [J].IEEE Robotics and Automation Letters,2020,5(3):4225-4232.

    • [64] BI Z M,GRUVER W A,ZHANG W J,et al.Automated modeling of modular robotic configurations [J].Robotics and Autonomous Systems,2006,54(12):1015-1025.

    • [65] KELMAR L,KHOSLA P K.Automatic generation of kinematics for a reconfigurable modular manipulator system [C].Proceedings.1988 IEEE international conference on robotics and automation,1988:663-668.

    • [66] CHOI J,PARK D Il,SHIN H,et al.A new approach to generate the DH parameters of modular robots [C].2017 2nd International Conference on Robotics and Automation Engineering,ICRAE 2017,2018:37-41.

    • [67] CHEN I M.On optimal configuration of modular reconfigurable robots [C].Proceedings of the 4th International Conference on Control,1996.

    • [68] CHEN I M,YANG G,KANG I G.Numerical inverse kinematics for modular reconfigurable robots [J].Journal of Robotic Systems,1999,16(4):213-225.

    • [69] CHEN I M,GAO Y.Closed-form inverse kinematics solver for reconfigurable robots [C].Proceedings-IEEE International Conference on Robotics and Automation,2001,3:2395-2400.

    • [70] CHEN I M,YANG G.Inverse kinematics for modular reconfigurable robots [C].Proceedings-IEEE International Conference on Robotics and Automation,1998,2:1647-1652.

    • [71] WANG J,LI Y.Analysis on the interaction between the nonholonomic mobile modular robot and the environment [C].2009 IEEE International Conference on Robotics and Biomimetics,ROBIO 2009,2009:86-91.

    • [72] LI X,SUN H,LIAO L,et al.Simulation and comparison research of Lagrange and Kane dynamics modeling for the 4-DOF modular industrial robot [C].5th International Conference on Advanced Design and Manufacturing Engineering,2015:251-254.

    • [73] LI X,SUN H X,LIAO L J,et al.Modeling and simulation research of Kane dynamics method for the 5-DOF modular industrial robot [C].Proceedings-2016 International Conference on Information System and Artificial Intelligence,ISAI 2016,2016:124-128.

    • [74] LI X,SUN H,LIAO L,et al.Establishing an improved kane dynamic model for the 7-DOF reconfigurable modular robot [J].Mathematical Problems in Engineering,2017.

    • [75] DIXIT O D,DHENDE V V.Dynamic analysis of a novel modular robot [C]//Congress on Intelligent Systems.2020:775-787.

    • [76] MAHKAM N,ÖZCAN O.A framework for dynamic modeling of legged modular miniature robots with soft backbones [J].Robotics and Autonomous Systems,2021,144:103841.

    • [77] YAO M,BELKE C H,CUI H,et al.A reconfiguration strategy for modular robots using origami folding [J].International Journal of Robotics Research,2019,38(1):73-89.

    • [78] WANG X,ZHANG M,GE W,et al.Dynamic modeling and configuration adaptive control for modular reconfigurable robot [J].Advances in Mechanical Engineering,2017,9(10):1-13.

    • [79] LEE W H,SANDERSON A C.Dynamic simulation of tetrahedron-based tetrobot [C]//Proceedings.1998 IEEE/RSJ International Conference on Intelligent Robots and Systems.1998:630-635.

    • [80] LILJEBÄCK P,STAVDAHL Ø,Pettersen K Y.Modular pneumatic snake robot 3D modelling,implementation and control [J].Modeling,Identification and Control,2008,29(1):21-28.

    • [81] PARK F C,BOBROW J E.A recursive algorithm for robot dynamics using lie groups [C].Proceeding of 1994 IEEE International Conference on Robotics and Automation,1994(3):1535-1540.

    • [82] FEI Y,ZHAO X,SONG L.A method for modular robots generating dynamics automatically [J].Robotica,2001,19(1):59-66.

    • [83] NAINER C,FEDER M,GIUSTI A.Automatic generation of kinematics and dynamics model descriptions for modular reconfigurable robot manipulators [C].IEEE International Conference on Automation Science and Engineering,2021:45-52.

    • [84] ZHANG X D,HE Y Q,DONG P.The high efficient dynamics modeling method for modular manipulator based on Space Operator Algebra [C].2017 IEEE International Conference on Robotics and Biomimetics,ROBIO 2017,2017:1612-1617.

    • [85] AOI S,SASAKI H,TSUCHIYA K.A multilegged modular robot that meanders:investigation of turning maneuvers using its inherent dynamic characteristics [J].SIAM Journal on Applied Dynamical Systems,2007,6(2):348-377.

    • [86] NIELSEN M C,EIDSVIK O A,BLANKE M,et al.Constrained multi-body dynamics for modular underwater robots-theory and experiments [J].Ocean Engineering,2018,149(2013):358-372.

    • [87] SAAB W,RACIOPPO P,KUMAR A,et al.Design of a miniature modular inchworm robot with an anisotropic friction skin [J].Robotica,2019,37(3):521-538.

    • [88] FEI Y,GAO H.Nonlinear dynamic modeling on multi-spherical modular soft robots [J].Nonlinear Dynamics,2014,78(2):831-838.

    • [89] PLITEA N,SZILAGHYI A,COCOREAN D,et al.Inverse dynamics and simulation of a 5-DOF modular parallel robot used in brachytherapy [C].Proceedings of the Romanian Academy Series A-Mathematics Physics Technical Sciences Information Science,2016,17(1):67-75.

    • [90] 刘玉刚,李杨民,刘晓平等.基于模糊优化辨识模块化机器人关节动力学参数 [J].机械工程学报,2003,39(4):66-70.LIU Y G,LI Y M,LIU X P,et al.Identification of joint dynamic parameters of modular manipulator via fuzzy optimization [J].Chinese Journal of Mechanical Engineering,2003,39(4):66-70.(in Chinese)

    • [91] JIANG S,ZHENG Y,ZHU H.A contact stiffness model of machined plane joint based on fractal theory [J].Journal of Tribology,2010,132(1):1-7.

    • [92] MAJUMDAR A,BHUSHAN B.Fractal model of elastic-plastic contact between rough surfaces [J].Journal of Tribology,1991,113(1):1-11.

    • [93] GREENWOOD J A.The contact of nominally flat surfaces [C]//Proceedings of the Royal Society of London.1996:300-319.

    • [94] BORODICH F M,MOSOLOV A B.Fractal roughness in contact problems [J].Journal of Applied Mathematics and Mechanics,1992,56(5):681-690.

    • [95] GAO H,LI Y,GUAN H,et al.Dynamic simulation of modular robot joint with friction and flexibility [C].ACM International Conference Proceeding Series,2020:1-5.

    • [96] ZHANG T,ZHANG W,GUPTA M M.A novel docking system for modular self-reconfigurable robots [J].Robotics,2017,6(4):11-13.

    • [97] FEI Y,ZHAO X.Design and dock analysis for the interactive module of a lattice-based self-reconfigurable robot [J].Robotics and Autonomous Systems,2007,55(2):87-95.

    • [98] QIAO G,SONG G,WANG W,et al.Design and implementation of a modular self-reconfigurable robot [J].International Journal of Advanced Robotic Systems,2014,11(1):1-12.

    • [99] ZHANG Y,ZHENG T,FAN J,et al.Nonlinear modeling and docking tests of a soft modular robot [J].IEEE Access,2019,7:11328-11337.

    • [100] WEI H X,LI H Y,GUAN Y,et al.A dynamics based two-stage path model for the docking navigation of a self-assembly modular robot(Sambot)[J].Robotica,2016,34(7):1517-1528.

    • [101] ZHU W H,LAMARCHE T,DUPUIS E,et al.Precision control of modular robot manipulators:the VDC approach with embedded fpga [J].IEEE Transactions on Robotics,2013,29(5):1162-1179.

    • [102] NAINER C,GIUSTI A.Automatically deployable robust control of modular reconfigurable robot manipulators [J].IEEE Robotics and Automation Letters,2022,7(2):5286-5293.

    • [103] GIUSTI A,ALTHOFF M.Automatic centralized controller design for modular and reconfigurable robot manipulators [C].IEEE International Conference on Intelligent Robots and Systems,2015:3268-3275.

    • [104] LIU G,ABDUL S,GOLDENBERG A A.Distributed control of modular and reconfigurable robot with torque sensing [J].Robotica,2008,26(1):75-84.

  • 参考文献

    • [1] ZHU Y,ZHAO J,CUI X,et al.Design and implementation of UBot:a modular self-reconfigurable robot [C].2013 IEEE International Conference on Mechatronics and Automation,IEEE ICMA 2013,2013:1217-1222.

    • [2] SPRÖWITZ A,POUYA S,BONARDI S,et al.Roombots:reconfigurable robots for adaptive furniture [J].IEEE Computational Intelligence Magazine,2010,5(3):20-32.

    • [3] SPRÖWITZ A,MOECKEL R,VESPIGNANI M,et al.Roombots:a hardware perspective on 3D self-reconfiguration and locomotion with a homogeneous modular robot [J].Robotics and Autonomous Systems,2014,62(7):1016-1033.

    • [4] HAUSER S,MUTLU M,LÉZIART P A,et al.Roombots extended:Challenges in the next generation of self-reconfigurable modular robots and their application in adaptive and assistive furniture [J].Robotics and Autonomous Systems,2020,127:103467.

    • [5] DORIGO M.Swarm-bot:an experiment in swarm robotics [C].Proceedings-2005 IEEE Swarm Intelligence Symposium,SIS 2005,2005:192-200.

    • [6] MONDADA F,PETTINARO G C,GUIGNARD A,et al.Swarm-bot:a new distributed robotic concept [J].Autonomous Robots,2004,17(2-3):193-221.

    • [7] LIOW L,CLARK A B,ROJAS N.OLYMPIC:a modular,tendon-driven prosthetic hand with novel finger and wrist coupling mechanisms [J].IEEE Robotics and Automation Letters,2020,5(2):299-306.

    • [8] DENAVIT J,HARTENBERG R S.A kinematic notation for lower-pair mechanisms based on matrices [J].Journal of Applied Mechanics,1955,22(2):215-221.

    • [9] BROCKETT R W.Robotic manipulators and the product of exponentials formula [J].Mathematical Theory of Networks and Systems,1984:120-129.

    • [10] VLADAREANU L,TONT G,ION I,et al.Fuzzy dynamic modeling for walking modular robot control [C].Proceedings of the 9th WSEAS International Conference on Applications of Electrical Engineering,2010:163-170.

    • [11] WHITMAN J,TRAVERS M,CHOSET H.Learning modular robot control policies [J].2021:1-19.

    • [12] GIUSTI A,ALTHOFF M.On-the-Fly control design of modular robot manipulators [J].IEEE Transactions on Control Systems Technology,2018,26(4):1484-1491.

    • [13] MELEK W W,GOLDENBERG A A.Neurofuzzy control of modular and reconfigurable robots [J].IEEE/ASME Transactions on Mechatronics,2003,8(3):381-389.

    • [14] RÜCKERT P,ADAM J,PAPENBERG B,et al.Calibration of a modular assembly system for personalized and adaptive human robot collaboration [J].Procedia CIRP,2018,76:199-204.

    • [15] CHEN I M.A novel kinematic calibration algorithm for reconfigurable robotic systems [C].Proceedings of International Conference on Robotics and Automation,1997:3197-3202.

    • [16] LIU S B,ALTHOFF M.Optimizing performance in automation through modular robots [C].Proceedings-IEEE International Conference on Robotics and Automation,2020:4044-4050.

    • [17] WU W,GUAN Y,YANG Y,et al.Multi-objective configuration optimization of assembly-level reconfigurable modular robots [C].2016 IEEE International Conference on Information and Automation,IEEE ICIA 2016,2017:528-533.

    • [18] MARBACH D,IJSPEERT A J.Online optimization of modular robot locomotion [C].IEEE International Conference on Mechatronics and Automation,ICMA 2005,2005:248-253.

    • [19] YANG G,CHEN I M.Task-based optimization of modular robot configurations:minimized degree-of-freedom approach [J].Mechanism and Machine Theory,2000,35(4):517-540.

    • [20] MOUBARAK P,BEN-TZVI P.Modular and reconfigurable mobile robotics [J].Robotics and Autonomous Systems,2012,60(12):1648-1663.

    • [21] CHENNAREDDY S S R,AGRAWAL A,KARUPPIAH A.Modular self-reconfigurable robotic systems:a survey on hardware architectures [J].Journal of Robotics,2017.

    • [22] ALATTAS R J,PATEL S,SOBH T M.Evolutionary modular robotics:survey and analysis [J].Journal of Intelligent and Robotic Systems:Theory and Applications,2019,95(3-4):815-828.

    • [23] ØSTERGAARD E H,KASSOW K,BECK R,et al.Design of the ATRON lattice-based self-reconfigurable robot [J].Autonomous Robots,2006,21(2):165-183.

    • [24] ROMANISHIN J W,GILPIN K,CLAICI S,et al.3D M-Blocks:self-reconfiguring robots capable of locomotion via pivoting in three dimensions [C].Proceedings-IEEE International Conference on Robotics and Automation,2015:1925-1932.

    • [25] SUH J W,HOMANS S B,YIM M.Telecubes:mechanical design of a module for self-reconfigurable robotics [C].Proceedings-IEEE International Conference on Robotics and Automation,2002,4:4095-4101.

    • [26] RUS D,VONA M.Physical implementation of the self-reconfiguring crystalline robot [C].Proceedings-IEEE International Conference on Robotics and Automation,2000,2:1726-1733.

    • [27] GRANDGIRARD J,POINSOT D,KRESPI L,et al.A modular self-reconfigurable bipartite robotic system:implementation and motion planning [J].Autonomous Robots,2001,10:23-40.

    • [28] QIAO G,SONG G,ZHANG J,et al.Design of transmote:a modular self-reconfigurable robot with versatile transformation capabilities [C].2012 IEEE International Conference on Robotics and Biomimetics,ROBIO 2012-Conference Digest,2012:1331-1336.

    • [29] YIM M,DUFF D G,ROUFAS K D.PolyBbot:a modular reconfigurable robot [C].Proceedings-IEEE International Conference on Robotics and Automation,2000,1:514-520.

    • [30] HIROSE S,SHIRASU T,FUKUSHIMA E F.Proposal for cooperative robot “Gunryu” composed of autonomous segments [J].Robotics and Autonomous Systems,1996,17(1-2):107-118.

    • [31] YIM M,SHIRMOHAMMADI B,SASTRA J,et al.Towards robotic self-reassembly after explosion [C].IEEE International Conference on Intelligent Robots and Systems,2007:2767-2772.

    • [32] LYDER A,GARCIA R F M,STOY K.Mechanical design of Odin,an extendable heterogeneous deformable modular robot [J].2008 IEEE/RSJ International Conference on Intelligent Robots and Systems,IROS,2008:883-888.

    • [33] YU C H,HALLER K,INGBER D,et al.Morpho:a self-deformable modular robot inspired by cellular structure [J].2008 IEEE/RSJ International Conference on Intelligent Robots and Systems,IROS,2008:3571-3578.

    • [34] KUROKAWA H,TOMITA K,KAMIMURA A,et al.Distributed self-reconfiguration of M-TRAN Ⅲ modular robotic system [J].International Journal of Robotics Research,2008,27(3-4):373-386.

    • [35] ZYKOV V,MYTILINAIOS E,DESNOYER M,et al.Evolved and designed self-reproducing modular robotics [J].IEEE Transactions on Robotics,2007,23(2):308-319.

    • [36] SHEN W M,KRIVOKON M,RUBENSTEIN M,et al.Multimode locomotion via self-reconfigurable robots [J].Autonomous Robots,2006,20(2):165-177.

    • [37] ZHU Y,ZHAO J,CUI X,et al.Design and implementation of UBot:a modular self-reconfigurable robot [C].2013 IEEE International Conference on Mechatronics and Automation,IEEE ICMA 2013,2013:1217-1222.

    • [38] KIRBY B,CAMPBELL J,AKSAK B,et al.Catoms:moving robots without moving parts [C].Proceedings of the National Conference on Artificial Intelligence,2005,4:1730-1731.

    • [39] BRANDT D,CHRISTENSEN D J,LUND H H.ATRON robots:versatility from self-reconfigurable modules [C].Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation,ICMA 2007,2007:26-32.

    • [40] JØRGENSEN M W,ØSTERGAARD E H,LUND H H.Modular ATRON:modules for a self-reconfigurable robot [C].2004 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS),2004,2:2068-2073.

    • [41] ROMANISHIN J W,GILPIN K,Rus D.M-blocks:momentum-driven,magnetic modular robots [C].IEEE International Conference on Intelligent Robots and Systems,2013:4288-4295.

    • [42] ROMANISHIN J W.M-Blocks:three dimensional modular self-reconfigurable robots [R].Massachusetts Institute of Technology,2018.

    • [43] YIM M,DUFF D G,ROUFAS K D.PolyBbot:a modular reconfigurable robot [C]//Proceedings-IEEE International Conference on Robotics and Automation.2000:514-520.

    • [44] YIM M,ZHANG Y,ROUFAS K,et al.Connecting and disconnecting for chain self-reconfiguration with PolyBbot [J].IEEE/ASME Transactions on Mechatronics,2002,7(4):442-451.

    • [45] MURATA S,YOSHIDA E,KAMIMURA A,et al.M-TRAN:self-reconfigurable modular robotic system [J].IEEE/ASME Transactions on Mechatronics,2002,7(4):431-441.

    • [46] KUROKAWA H,KAMIMURA A,YOSHIDA E,et al.M-TRAN Ⅱ:metamorphosis from a four-legged walker to a caterpillar [C].IEEE International Conference on Intelligent Robots and Systems,2003,3:2454-2459.

    • [47] SPINOS A,CARROLL D,KIENTZ T,et al.Variable topology truss:design and analysis [C].IEEE International Conference on Intelligent Robots and Systems,2017:2717-2722.

    • [48] LIU C,YU S,YIM M.Motion planning for variable topology truss modular robot [J].Robotics:Science and Systems,2020.

    • [49] SHIMIZU M,MORI T,ISHIGURO A.A development of a modular robot that enables adaptive reconfiguration [C].IEEE International Conference on Intelligent Robots and Systems,2006:174-179.

    • [50] CHRISTENSEN D J.Evolution of shape-changing and self-repairing control for the ATRON self-reconfigurable robot [C].Proceedings-IEEE International Conference on Robotics and Automation,2006:2539-2545.

    • [51] KAMIMURA A,KUROKAWA H,YOSHIDA E,et al.Distributed adaptive locomotion by a modular robotic system,M-TRAN Ⅱ-From local adaptation to global coodinated motion using CPG controllers [C].2004 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS),2004,3:2370-2377.

    • [52] LIU C,LIN Q,KIM H,et al.SMORES-EP,a modular robot with parallel self-assembly [J].2021.

    • [53] JING G,TOSUN T,YIM M,et al.An end-to-end system for accomplishing tasks with modular robots [J].Robotics:Science and Systems,2016,12.

    • [54] TOSUN T,DAUDELIN J,JING G,et al.Perception-informed autonomous environment augmentation with modular robots [C].Proceedings-IEEE International Conference on Robotics and Automation,2018:6818-6824.

    • [55] SHIMIZU M,ISHIGURO A,KAWAKATSU T.A modular robot that exploits a spontaneous connectivity control mechanism [C].2005 IEEE/RSJ International Conference on Intelligent Robots and Systems,IROS,2005(1):1899-1904.

    • [56] 吴文强.可重构模块化机器人建模、优化与控制[D].广州:华南理工大学,2013.WU W Q.Modeling,optimation and control of reconfigurable modular robot [D].Guangzhou:South China University of Technology,2013.(in Chinese)

    • [57] YANG G,CHEN I M.Modular robots:theory and practice [B].Springer Singapore,2022.

    • [58] GUPTA K C.Kinematic analysis of manipulators using the zero reference position description [J].The International Journal of Robotics Research,1986,5(2):5-13.

    • [59] 周冬冬,王国栋,肖聚亮等.新型模块化可重构机器人设计与运动学分析 [J].工程设计学报,2016,23(1):74-81.ZHOU D D,WANG G D,XIAO J L,et al.Design and kinematics anslysis of new modular reconfigurable robot [J].Chinese Journal of Engineering Design,2016,23(1):74-81.(in Chinese)

    • [60] THAKKER R,KAMAT A,BHARAMBE S,et al.ReBiS-reconfigurable bipedal snake robot [C].IEEE International Conference on Intelligent Robots and Systems,2014:309-314.

    • [61] TANG S,YU Y,LIANG W.Structural design and optimization of modular underactuated multi-fingered manipulator [C].Proceedings of 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference,ITOEC 2018,2018:1028-1036.

    • [62] LI Y,ZHU S,WANG Z,et al.The kinematics analysis of a novel self-reconfigurable modular robot based on screw theory [J].DEStech Transactions on Engineering and Technology Research,2016.

    • [63] YUN A,MOON D,HA J,et al.ModMan:an advanced reconfigurable manipulator system with genderless connector and automatic kinematic modeling algorithm [J].IEEE Robotics and Automation Letters,2020,5(3):4225-4232.

    • [64] BI Z M,GRUVER W A,ZHANG W J,et al.Automated modeling of modular robotic configurations [J].Robotics and Autonomous Systems,2006,54(12):1015-1025.

    • [65] KELMAR L,KHOSLA P K.Automatic generation of kinematics for a reconfigurable modular manipulator system [C].Proceedings.1988 IEEE international conference on robotics and automation,1988:663-668.

    • [66] CHOI J,PARK D Il,SHIN H,et al.A new approach to generate the DH parameters of modular robots [C].2017 2nd International Conference on Robotics and Automation Engineering,ICRAE 2017,2018:37-41.

    • [67] CHEN I M.On optimal configuration of modular reconfigurable robots [C].Proceedings of the 4th International Conference on Control,1996.

    • [68] CHEN I M,YANG G,KANG I G.Numerical inverse kinematics for modular reconfigurable robots [J].Journal of Robotic Systems,1999,16(4):213-225.

    • [69] CHEN I M,GAO Y.Closed-form inverse kinematics solver for reconfigurable robots [C].Proceedings-IEEE International Conference on Robotics and Automation,2001,3:2395-2400.

    • [70] CHEN I M,YANG G.Inverse kinematics for modular reconfigurable robots [C].Proceedings-IEEE International Conference on Robotics and Automation,1998,2:1647-1652.

    • [71] WANG J,LI Y.Analysis on the interaction between the nonholonomic mobile modular robot and the environment [C].2009 IEEE International Conference on Robotics and Biomimetics,ROBIO 2009,2009:86-91.

    • [72] LI X,SUN H,LIAO L,et al.Simulation and comparison research of Lagrange and Kane dynamics modeling for the 4-DOF modular industrial robot [C].5th International Conference on Advanced Design and Manufacturing Engineering,2015:251-254.

    • [73] LI X,SUN H X,LIAO L J,et al.Modeling and simulation research of Kane dynamics method for the 5-DOF modular industrial robot [C].Proceedings-2016 International Conference on Information System and Artificial Intelligence,ISAI 2016,2016:124-128.

    • [74] LI X,SUN H,LIAO L,et al.Establishing an improved kane dynamic model for the 7-DOF reconfigurable modular robot [J].Mathematical Problems in Engineering,2017.

    • [75] DIXIT O D,DHENDE V V.Dynamic analysis of a novel modular robot [C]//Congress on Intelligent Systems.2020:775-787.

    • [76] MAHKAM N,ÖZCAN O.A framework for dynamic modeling of legged modular miniature robots with soft backbones [J].Robotics and Autonomous Systems,2021,144:103841.

    • [77] YAO M,BELKE C H,CUI H,et al.A reconfiguration strategy for modular robots using origami folding [J].International Journal of Robotics Research,2019,38(1):73-89.

    • [78] WANG X,ZHANG M,GE W,et al.Dynamic modeling and configuration adaptive control for modular reconfigurable robot [J].Advances in Mechanical Engineering,2017,9(10):1-13.

    • [79] LEE W H,SANDERSON A C.Dynamic simulation of tetrahedron-based tetrobot [C]//Proceedings.1998 IEEE/RSJ International Conference on Intelligent Robots and Systems.1998:630-635.

    • [80] LILJEBÄCK P,STAVDAHL Ø,Pettersen K Y.Modular pneumatic snake robot 3D modelling,implementation and control [J].Modeling,Identification and Control,2008,29(1):21-28.

    • [81] PARK F C,BOBROW J E.A recursive algorithm for robot dynamics using lie groups [C].Proceeding of 1994 IEEE International Conference on Robotics and Automation,1994(3):1535-1540.

    • [82] FEI Y,ZHAO X,SONG L.A method for modular robots generating dynamics automatically [J].Robotica,2001,19(1):59-66.

    • [83] NAINER C,FEDER M,GIUSTI A.Automatic generation of kinematics and dynamics model descriptions for modular reconfigurable robot manipulators [C].IEEE International Conference on Automation Science and Engineering,2021:45-52.

    • [84] ZHANG X D,HE Y Q,DONG P.The high efficient dynamics modeling method for modular manipulator based on Space Operator Algebra [C].2017 IEEE International Conference on Robotics and Biomimetics,ROBIO 2017,2017:1612-1617.

    • [85] AOI S,SASAKI H,TSUCHIYA K.A multilegged modular robot that meanders:investigation of turning maneuvers using its inherent dynamic characteristics [J].SIAM Journal on Applied Dynamical Systems,2007,6(2):348-377.

    • [86] NIELSEN M C,EIDSVIK O A,BLANKE M,et al.Constrained multi-body dynamics for modular underwater robots-theory and experiments [J].Ocean Engineering,2018,149(2013):358-372.

    • [87] SAAB W,RACIOPPO P,KUMAR A,et al.Design of a miniature modular inchworm robot with an anisotropic friction skin [J].Robotica,2019,37(3):521-538.

    • [88] FEI Y,GAO H.Nonlinear dynamic modeling on multi-spherical modular soft robots [J].Nonlinear Dynamics,2014,78(2):831-838.

    • [89] PLITEA N,SZILAGHYI A,COCOREAN D,et al.Inverse dynamics and simulation of a 5-DOF modular parallel robot used in brachytherapy [C].Proceedings of the Romanian Academy Series A-Mathematics Physics Technical Sciences Information Science,2016,17(1):67-75.

    • [90] 刘玉刚,李杨民,刘晓平等.基于模糊优化辨识模块化机器人关节动力学参数 [J].机械工程学报,2003,39(4):66-70.LIU Y G,LI Y M,LIU X P,et al.Identification of joint dynamic parameters of modular manipulator via fuzzy optimization [J].Chinese Journal of Mechanical Engineering,2003,39(4):66-70.(in Chinese)

    • [91] JIANG S,ZHENG Y,ZHU H.A contact stiffness model of machined plane joint based on fractal theory [J].Journal of Tribology,2010,132(1):1-7.

    • [92] MAJUMDAR A,BHUSHAN B.Fractal model of elastic-plastic contact between rough surfaces [J].Journal of Tribology,1991,113(1):1-11.

    • [93] GREENWOOD J A.The contact of nominally flat surfaces [C]//Proceedings of the Royal Society of London.1996:300-319.

    • [94] BORODICH F M,MOSOLOV A B.Fractal roughness in contact problems [J].Journal of Applied Mathematics and Mechanics,1992,56(5):681-690.

    • [95] GAO H,LI Y,GUAN H,et al.Dynamic simulation of modular robot joint with friction and flexibility [C].ACM International Conference Proceeding Series,2020:1-5.

    • [96] ZHANG T,ZHANG W,GUPTA M M.A novel docking system for modular self-reconfigurable robots [J].Robotics,2017,6(4):11-13.

    • [97] FEI Y,ZHAO X.Design and dock analysis for the interactive module of a lattice-based self-reconfigurable robot [J].Robotics and Autonomous Systems,2007,55(2):87-95.

    • [98] QIAO G,SONG G,WANG W,et al.Design and implementation of a modular self-reconfigurable robot [J].International Journal of Advanced Robotic Systems,2014,11(1):1-12.

    • [99] ZHANG Y,ZHENG T,FAN J,et al.Nonlinear modeling and docking tests of a soft modular robot [J].IEEE Access,2019,7:11328-11337.

    • [100] WEI H X,LI H Y,GUAN Y,et al.A dynamics based two-stage path model for the docking navigation of a self-assembly modular robot(Sambot)[J].Robotica,2016,34(7):1517-1528.

    • [101] ZHU W H,LAMARCHE T,DUPUIS E,et al.Precision control of modular robot manipulators:the VDC approach with embedded fpga [J].IEEE Transactions on Robotics,2013,29(5):1162-1179.

    • [102] NAINER C,GIUSTI A.Automatically deployable robust control of modular reconfigurable robot manipulators [J].IEEE Robotics and Automation Letters,2022,7(2):5286-5293.

    • [103] GIUSTI A,ALTHOFF M.Automatic centralized controller design for modular and reconfigurable robot manipulators [C].IEEE International Conference on Intelligent Robots and Systems,2015:3268-3275.

    • [104] LIU G,ABDUL S,GOLDENBERG A A.Distributed control of modular and reconfigurable robot with torque sensing [J].Robotica,2008,26(1):75-84.

  • 微信公众号二维码

    手机版网站二维码