en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

李鹏,E-mail:lipeng_mech@nuaa.edu.cn;

钱征华,qianzh@nuaa.edu.cn

中图分类号:O326

文献标识码:A

文章编号:1672-6553-2022-20(5)-066-10

DOI:10.6052/1672-6553-2022-005

参考文献 1
刘德宇,李兵,赵文静,等.变波长水平剪切波电磁超声换能器设计.测控技术,2015,34(9):127~130(Liu D Y,Li B,Zhao W J,et al.Design of shear horizontal wave EMAT with variable wavelength.Measurement & Control Technology,2015,34(9):127~130(in Chinese))
参考文献 2
唐秀洁.基于水平剪切波的混凝土抗压强度无损检测方法研究[硕士学位论文].大连:大连理工大学,2021(Tang X J.Research on nondestructive testing method for concrete compressive strength assessment based on shear-horizontal waves[Master Thesis].Dalian:Dalian University of Technology,2021(in Chinese))
参考文献 3
阎雪冬,郭艳伟,刘礼良.基于SH波EMAT和小波分析的管道缺陷检测技术.中国石油和化工标准与质量,2020,40(16):73~74,78(Yan X D,Guo Y W,Liu L L.Pipeline defect detection technology based on SH wave EMAT and wavelet analysis.China Petroleum and Chemical Standard and Quality,2020,40(16):73~74,78(in Chinese))
参考文献 4
赵亮,张金,董子华,等.斜入射SH波厚壁管道内壁裂纹检测方法.应用声学,2020,39(5):747~752(Zhao L,Zhang J,Dong Z H,et al.The detection method of cracks on the inner wall of thick wall pipes with inclined beams of SH waves.Journal of Applied Acoustics,2020,39(5):747~752(in Chinese))
参考文献 5
陈帅.乳腺肿瘤超声剪切波弹性图像的计算机辅助诊断[硕士学位论文].上海:上海大学,2015(Chen S.Computer-aided diagnosis of breast tumors with ultrasonic shear-wave elastogram [Master Thesis].Shanghai:Shanghai University,2015(in Chinese))
参考文献 6
孙芳,石岩,杨智,等.剪切波联合二维超声对甲状腺乳头状癌中央区淋巴结转移的预测价值.实用医学杂志,2021,37(14):1866~1871(Sun F,Shi Y,Yang Z,et al.The predictive value of shear wave elastography combined with two dimensional ultrasound in central lymph node metastasis of papillary thyroid carcinoma.The Journal of Practical Medicine,2021,37(14):1866~1871(in Chinese))
参考文献 7
余敏睿,杨杰,王进勇,等.二维剪切波弹性成像测量脾硬度联合血小板/脾直径对乙型肝炎肝硬化患者中重度食管胃静脉曲张的评估价值.临床肝胆病杂志,2021,37(7):1572~1577(Yu M R,Yang J,Wang J Y,et al.Value of spleen stiffness measured by two-dimensional shear wave elastography combined with platelet count/spleen diameter ratio in evaluating moderate-to-severe gastroesophageal varices in patients with hepatitis B cirrhosis.Journal of Clinical Hepatology,2021,37(7):1572~1577(in Chinese))
参考文献 8
Cosgrove D O,Berg W A,Doré C J,et al.Shear wave elastography for breast masses is highly reproducible.European Radiology,2012,22(5):1023~1032
参考文献 9
Su P Y,Su W W,Wu L S,et al.Reduction of shear wave elastography but not shear wave dispersion after successful hepatitis C treatment with direct-acting antiviral agents.Journal of Ultrasound in Medicine,2021,40(9):1919~1926
参考文献 10
Li P,Biwa S.The SH0 wave manipulation in graded stubbed plates and its application to wave focusing and frequency separation.Smart Materials and Structures,2019,28(11):115004
参考文献 11
张超瑾.水平剪切波的激发及与金属板中损伤相互作用[硕士学位论文].镇江:江苏大学,2017(Zhang C J.Shear horizontal wave generation and interaction with defects in metallic plates [Master Thesis].Zhenjiang:Jiangsu University,2017(in Chinese))
参考文献 12
闫军生.窄板结构中超声导波传播特性研究[硕士学位论文].北京:北京工业大学,2014(Yan J S.Research on propagation characteristics of ultrasonic guided wave in narrow strips[Master Thesis].Beijing:Beijing University of Technology,2014(in Chinese))
参考文献 13
魏少宏,王业南,刘頔.散射体边界的凸起结构对声子晶体带隙的影响.天津师范大学学报(自然科学版),2021,41(2):24~30(Wei S H,Wang Y N,Liu D.Effects of convex structure of scatter edge in phononic crystal on the characteristics of band gap.Journal of Tianjin Normal University(Natural Science Edition),2021,41(2):24~30(in Chinese))
参考文献 14
韩星凯.基于带隙和波调控的声子晶体设计[博士学位论文].大连:大连理工大学,2020(Han X K.The design of the phononic crystal based on band gap and wave control [Ph.D Thesis].Dalian:Dalian University of Technology,2020(in Chinese))
参考文献 15
温熙森,温激鸿,郁殿龙,等.声子晶体.北京:国防工业出版社,2009:6~15(Wen X S,Wen J H,Yu D L,et al.Phononic crystals.Beijing:National Defence Industry Press,2009:6~15(in Chinese))
参考文献 16
刘杰,林春贯,文桂林.三重周期极小曲面夹芯结构的隔声性能研究.动力学与控制学报,2021,19(4):64~72(Liu J,Lin C G,Wen G L.Study on sound insulation performance of sandwich structures with triply periodic minimal surface cores.Journal of Dynamics and Control,2021,19(4):64~72(in Chinese))
参考文献 17
Rubio C,Tarrazó-Serrano D,Minin O V,et al.Wavelength-scale gas-filled cuboid acoustic lens with diffraction limited focusing.Results in Physics,2019,12:1905~1908
参考文献 18
Li P,Cheng L.Shear horizontal wave propagation in a periodic stubbed plate and its application in rainbow trapping.Ultrasonics,2018,84:244~253
参考文献 19
Lawrence A J,Goldsberry B M,Wallen S P,et al.Numerical study of acoustic focusing using a bianisotropic acoustic lens.The Journal of the Acoustical Society of America,2020,148(4):365~369
参考文献 20
Nikoli V,Kaltenbacher B.Sensitivity analysis for shape optimization of a focusing acoustic lens in lithotripsy.Applied Mathematics & Optimization,2017,76(2):261~301
参考文献 21
Qian J,Wang Y,Xia J,et al.Broadband integrative acoustic asymmetric focusing lens based on mode-conversion meta-atoms.Applied Physics Letters,2020,116(22):223505
参考文献 22
Hyun J,Kim Y T,Doh I,et al.Realization of an ultrathin acoustic lens for subwavelength focusing in the megasonic range.Scientific Reports,2018,8(1):9131
参考文献 23
Chen Z,Peng Y,Li H,et al.Efficient nonreciprocal mode transitions in spatiotemporally modulated acoustic metamaterials.Science Advances,2021,7(45):eabj1198
参考文献 24
Zhao J,Cui X,Bonello B,et al.Broadband sub-diffraction and ultra-high energy density focusing of elastic waves in planar gradient-index lenses.The Journal of the Mechanics and Physics of Solids,2021,150:104357
参考文献 25
孙宏祥,方欣,葛勇,等.基于蜷曲空间结构的近零折射率声聚焦透镜.物理学报,2017,66(24):145~153(Sun H X,Fang X,Ge Y,et al.Acoustic focusing lens with near-zero refractive index based on coiling-up space structure.Acta Physica Sinica,2017,66(24):145~153(in Chinese))
参考文献 26
曹宇杰.基于H分形声学超材料研究的声聚焦透镜设计[硕士学位论文].哈尔滨:哈尔滨工业大学,2018(Cao Y J.Design of acoustic focusing lens based on H-fractal acoustic metamaterial[Master Thesis].Harbin:Harbin Institute of Technology,2018(in Chinese))
参考文献 27
Jahdali A R,Wu Y.High transmission acoustic focusing by impedance-matched acoustic meta-surfaces.Applied Physics Letters,2016,108(3):031902
参考文献 28
Peng P,Xiao B,Wu Y.Flat acoustic lens by acoustic grating with curled slits.Physics Letters A,2014,378(45):3389~3392
参考文献 29
Xu Y.Analytical study of dispersion relations for shear horizontal wave propagation in plates with periodic stubs.Ultrasonics,2015,61:114~120
参考文献 30
Zhou W,Li H,Yuan F G.Guided wave generation,sensing and damage detection using in-plane shear piezoelectric wafers.Smart Materials and Structures,2013,23(1):015014
目录contents

    摘要

    本文首先建立求解水平剪切波(即SH波)在桩柱周期分布的板中传播的理论模型,计算其带隙结构,并与有限元仿真的结果进行对比,验证该理论模型的准确性.在此基础上,应用此模型研究桩柱高度对最低阶水平剪切波(即SH0)的影响,发现随着桩柱高度的增加,SH0的相速度降低.基于桩柱高度与相速度的敏感特性,设计了一款可实现SH0聚焦的透镜,并进行相关的仿真分析,研究该透镜的适用范围和聚焦效果.研究结果表明,该透镜聚焦位置准确,聚焦能量高,且在不改变结构的情况下在一定频率范围内均可实现聚焦功能,从而为能量收集、超声医学、无损检测、吸声降噪等应用提供新的思路.

    Abstract

    In this paper, a theoretical model for depicting shear horizontal wave (SH) propagation in a periodic plate with stubs is established, based on which the band structures are obtained numerically. Then, accuracy of this model is validated via compassion with the results from finite element method. After that, the influence of stub height on the fundamental mode of SH wave (SH0) is systematically investigated, and results indicate that the phase velocity of SH0 wave decreases with increasing of stub height. With aid of sensitivity of phase velocity to the stub height, an SH0-wave-based lens for focusing plane wave is designed, and its working performance is examined, including the focusing position, energy distribution, and frequency bandwidth. It is revealed that the lens designed has a good performance, with an accurate focusing position and an evident focusing phenomenon. Additionally, the lens exhibits broadband, which can work in a certain frequency range that centered around the designed frequency. The design scheme in this paper provide a new idea for applications of energy harvesting, ultrasonic medicine, non-destructive testing, noise reduction and so forth.

  • 引言

  • 水平剪切波,即SH波,其质点的振动方向与传播方向垂直且位于水平平面内,能够在弹性层中产生并传播.由于SH波不易发生模态转换,在遇到非连续界面或结构边界处能量损失较小,因此被广泛应用于信号分析及缺陷检测[1-4].SH波在辐射图像降噪中可以更好地保留边缘及细节信息,因此也被应用于超声成像领域[5].此外,基于SH波的弹性成像技术已被证明在预测肿瘤、癌症等疾病的医学诊断中有较好的应用前景[6-9].

  • 均匀弹性板中的SH波包含很多模态[10-12],由低到高分别为0阶、1阶、2阶等,其中最低阶水平剪切波(即SH0)具有非频散特性,其波速只与材料参数有关,与频率及板的结构尺寸无关[10].这种非频散特性是一把双刃剑:一方面,非频散特性在结构健康监测和无损检测领域具有很大优势,因为波在传播过程中不会出现畸变,易于识别;另一方面,非频散特性不利于波的人工控制,因为通常很难通过结构尺寸对波的传播特性进行调节.然而,声子晶体和声学超材料的出现,使得对其传播进行控制出现了转机[13,14].

  • 声子晶体和声学超材料是新型的人工结构功能材料,具有其他材料所不具备的负折射、声吸收、缺陷态等一系列特性,应用前景广阔.以其能带结构为例,声子晶体和声学超材料可以用来控制弹性波的传播,弹性波可以在其通带频率范围内传播,而在带隙频率范围内弹性波的传播会受到抑制[15],因此用于结构的减振降噪[16].近年来,随着技术的发展,基于超材料控制声波能量、实现聚焦功能的声学透镜被相继实现.一般说来,声学透镜的设计均基于声子晶体和声学超材料的概念,其结构参数(如胞元的尺寸、排列方式等)按照某一特定的规律变化,如以气体为填充物的轻型声透镜[17]、圆形的龙伯透镜(Luneburg lens)和麦克斯韦鱼眼透镜(Maxwell Fish-Eye lens)[18]、各向异性材料组成的声透镜[19]等,结构的分布规律不同,形成透镜的功能和类型也有所差异.由于声学透镜在医学诊断、超声波治疗、无损检测等领域的应用潜力[20],其受到了越来越多的关注,随着研究人员研究的深入,声聚焦透镜的功能得到了进一步拓展,出现了可以实现模式转换的非对称聚焦透镜[21]、超音波范围内使用的超薄声透镜[22]、能够实现静态超材料中无法实现的非互易(nonreciprocal)声聚焦透镜[23]、能够将能量扩大约1000倍的宽带梯度折射率透镜[24]等.

  • 但目前的声学透镜多数都用于控制媒介中的声波或薄板中的低频弯曲波,这些波型易受结构尺寸的影响;而针对具有非频散特性的SH0,涉及基于SH0的透镜的相关研究很少,这正是本文研究的出发点之一.此外,声学透镜的结构越来越复杂[25,26],在实际制造中容易出现难以精密加工、制造成本高、很难推广等问题.因此,本文研究的目的在于设计一款基于SH0的简单实用的聚焦透镜.

  • 本文基于声子晶体的概念,首先建立了上下桩柱周期性分布的平板中SH波带隙结构求解的理论模型,并通过有限元仿真验证了模型的正确性.在此基础上,详细讨论并建立了典型结构参数(即桩柱高度)与SH0波速的定量关系;基于此,根据干涉原理构建了基于SH0的平面波透镜,并验证了该透镜的工作性能.本文的研究结果可以为能量俘获及收集提供一种新的思路和设计方法.

  • 1 理论模型

  • 1.1 模型简介

  • 为了使结构简单且易于加工,本文选取单相薄板用于构建基于SH0的平面波透镜,所选择的胞元如图1所示,即在长l、高2h的主体板上下各镶嵌一个桩柱,其截面尺寸分别为w2×d2w3×d3,整个结构关于y轴对称,为了便于分析,这里假设结构在z方向上尺寸无限大,同时将中间及上下桩柱分别划分为区域1、区域2、区域3.

  • 图1 理论模型及坐标系

  • Fig.1 The theoretical model and the coordinate system

  • 本文考虑沿x方向传播的SH波,由其传播特性可知ux=uy=0,仅存在z方向上的位移uz=u(x,y,t),其波动方程为

  • 2uzx2+2uzy2=1cSH022uzt2
    (1)
  • 式中, cSH0=G/ρ为无限大结构中SH波的固有体波波速(其中:G为剪切模量,ρ为材料密度),t为时间.

  • 区域1内的SH波可表达为[27-29]

  • uz(1)=γ=- Aγcosky,γy+Bγsinky,γyexpikx,γx
    (2)
  • 为了方便,式(2)中已经省略了通用的因子exp(iωt),在后续的各式中均省略了这一项.其中,AγBγ为待定系数, kx,γ=k+γ2πl为SH波沿x方向的波数,这里波数k的取值范围为-πl,πl,γ=0,±1,±2,表示阶数,γ取值越大, uz(1)收敛性越好.x方向的周期性是通过波数kx,γ体现的,例如:当γ=-1时, kx,γ-3πl,-πl;当γ=0时, kx,γ-πl,-πl;当γ=1时, kx,γπl,3πl,如此便可以周期性地遍历整个波数空间.本质上,式(2)是模态叠加法,即将沿±x方向传播的所有SH波的分量进行叠加,从而构成了区域1内位移的真实解.将式(2)代入到式(1)中可以得到SH波沿y方向的波数ky,γ=ω2cSH02-kx,γ2.根据物理方程及几何方程,剪切应力分量τzy(1)可表达为

  • τzy(1)=Guz(1)y=Gγ=- ky,γ-Aγsinky,γy+Bγcosky,γyexpikx,γx
    (3)
  • 区域2和区域3的位移可分别表达为

  • uz(2)=n=0,1,2 Cneiqn(2)h+d2-y+e-iqn(2)h+d2-y×cosαn(2)x+0.5w2
    (4)
  • uz(3)=m=0,1,2 Dmeiqm(3)h+d3+y+e-iqm(3)h+d3+y×cosαm(3)x+0.5w3
    (5)
  • 上式中,CnDm为未知数,nm为阶数,n=m=0,2,4,···代表对称模态,n=m=1,3,5,···代表反对称模态,上下桩柱沿x方向的波数分别为αn(2)=nπw2αm(3)=mπw3,因此左右两端的应力自由边界条件τzx =0已经满足;将其代入式(1),则可以得到上下桩柱沿y方向的波数分别为qy,n(2)=ω2cSH02-qx,n(2)2qy,m(3)=ω2cSH02-qx,m(3)2.从上述的分析可知,本质上本文采用的理论解是基于模态叠加的思想所得到的.根据式(4)和式 (5),则区域2、区域3的剪切应力分别为

  • τzy(2)=n=0,1,2 Gy,n(2)Cn-eiqy,n(2)h+d2-y+e-iqy,n(2)h+d2-y×cosqx,n(2)x+0.5w2
    (6)
  • τzy(3)=m=0,1,2 Gy,m(3)Dmeiqy,m(3)h+d3+y-e-iqy(3)h+d3+y×cosqx,m(3)x+0.5w3
    (7)
  • 1.2 边界条件

  • 式(6)和式(7)均已满足y=h+d2处的应力自由边界条件τzy(2)=0以及y=-h-d3处的应力自由边界条件τzy(3)=0.在y=±h处,应力与位移连续及应力自由边界条件为

  • y=h:τzy(1)=τzy(2),|x|0.5w20,0.5w2|x|0.5l
    (8a)
  • y=h,|x|0.5w2:uz(1)=uz(2)
    (8b)
  • y=-h:τzy(1)=τzy(3),|x|0.5w30,0.5w3|x|0.5l
    (9a)
  • y=-h,|x|0.5w3:uz(1)=uz(3)
    (9b)
  • 1.3 带隙结构的理论求解

  • 将式(2)~式(7)代入式(8)和式(9)可得

  • γ=- ky,γ-Aγsinky,γh+Bγcosky,γhexpikx,γx=n=0,1,2 2qy,n(2)Cnsinqy,n(2)d2cosqx,n(2)x+0.5w2,|x|0.5w20,0.5w2|x|0.5l(10a)

  • n=0,1,2 2Cncosqy,n(2)d2cosqx,n(2)x+0.5w2=γ=- Aγcosky,γh+Bγsinky,γhexpikx,γx(10b)

  • γ=- ky,γAγsinky,γh+Bγcosky,γhexpikx,γx=m=0,1,2 -2qy,m(3)Dmsinqy,m(3)d3cosqx,m(3)x+0.5w3,|x|0.5w30,0.5w3|x|0.5l(11a)

  • m=0,1,2 2Dmcosqy,m(3)d3qx,m(3)x+0.5w3=γ=- Aγcosky,γh-Bγsinky,γhexpikx,γx(11b)

  • 将式(10a)左右两边同时乘exp-ikx,γx,并在[-0.5l,0.5l]范围内对x进行积分;同时,将式(10b)左右两边同时乘cosqx,n(2)x+0.5w2,并在[-0.5w2,0.5w2]范围内对x进行积分,可得

  • δ0n+1w2Cncosqy,n(2)d2=γ=- Aγcosky,γh+Bγsinky,γhMnγ(2)(12a)

  • ky,γl-Aγsinky,γh+Bγcosky,γh=n=0,1,2 2qy,n(2)Cnsinqy,n(2)d2M-ny(2)(12b)

  • 其中

  • Mnγ(2)=-0.5w20.5w2 expikx,γxcosqx,n(2)(x+0.5w2dx=2kx,γsin0.5kx,γw2kx,γ2-qx,n(2)2,n=0,2,4,2ikx,γcos0.5kx,γw2kx,γ2-qx,n(2)2,n=1,3,5,
    (13)
  • M-nγ(2)Mny(2)的共轭.同理,对式(11a)和(11b)进行处理,可得

  • δ0m+1w3Dmcosqy,m(3)d3=γ=- Aγcosky,γh-Bγsinky,γhMmγ(3)(14a)

  • ky,γlAγsinky,γh+Bγcosky,γh=m=0,1,2 -2qy,m(3)Dmsinqy,m(3)d3M-mγ(3)(14b)

  • 其中

  • Mmγ(3)=-0.5w30.5w3 expikx,γxcosqy,m(3)(x+0.5w3dx=2kx,γsin0.5kx,γw3kx,γ2-qx,m(3)2,m=0,2,4,2ikx,γcos0.5kx,γw3kx,γ2-qx,m(3)2,m=1,3,5,
    (15)
  • M-mγ(3)Mmγ(3)的共轭.进一步对式(12)和式(14)进行整理,可得

  • γ'=- Xγγ'(2)cosky,γ'h+ky,γlsinky,γhδγγ'Aγ'+Xγγ'(2)sinky,γ'h-ky,γlcosky,γhδγγ'Bγ'=0 (16a) (16a)

  • γ'=- -Xγγ'(3)cosky,γ'h-

  • ky,γlsinky,γhδγγ'Aγ'+Xγγ'(3)sinky,γ'h-ky,γlcosky,γhδγγ'Bγ'=0(16b)

  • 其中

  • Xγγ'(2)=n=0,1,2 qy,n(2)tanqy,n(2)d22M-nγ(2)Mnγ'(2)δ0n+1w2Xγγ'(3)=m=0,1,2 qy,m(3)tanqy,m(3)d32M-mγ(3)M-mγ'(3)δ0m+1w3
    (17)
  • 式(16)可分解为包含4γ+2个待定系数的4γ+2个齐次线性方程,若使其存在非零解,要求关于待定系数的矩阵行列式等于零,数学上可以隐式地表达为F (k, f)=0.当波数k-πl,πl区间内变化时,即可通过数值方法求得其频率f,从而得到SH波在如图1所示的单胞结构中的频散特性,即带隙结构.本文在计算过程中用二分法求解f,同时由于-πl,0内的带隙结构与0,πl对称,所以本文仅以k0,πl为例开展数值模拟分析.

  • 2 模型的验证

  • 本文选择结构健康监测和无损检测领域常用的铝板作为研究对象,其密度和剪切模量分别为ρ=2700kg/m3G=26.316GPa[30],平板厚度为2h=0.5cm,SH0的相速度为cSH0=G/ρ=3122m/s.

  • 图2 不同结构参数下数值带隙结果与有限元带隙结果对比(l=2cm, 2h=0.5cm)

  • Fig.2 The band gap comparison between numerical results and finite element results with different structural parameters(l=2cm, 2h=0.5cm)

  • 为验证理论模型的正确性,分别选取结构参数不同的两个胞元进行理论分析与有限元验证.为了精确验证理论模型的正确性,有限元仿真采用Comsol Multiphysics软件的二维声学模块,这是因为二维声学模块中声波的控制方程及边界条件与SH波具有高度的一致性.图2为其带隙结构,反映了波矢与频率之间的色散关系,其中,横坐标表示无量纲波数kl/π,取值范围为[0,1],对应第一布里渊区[0,π/l];曲线代表理论得到的结果;圆圈代表有限元仿真软件Comsol Multiphysics的输出结果.由图2可见,不同结构参数下,数值结果与有限元结果几乎完全吻合,这充分证明了本文理论模型的正确性.此外,由图2还可以看出,由于结构尺寸所导致的阻抗不匹配可以产生布拉格散射,从而形成带隙,例如图2中最低阶带隙的中心频率fl/cSH0约为0.5,因此结构尺寸的改变能够影响SH波传播特性的改变.

  • 3 SH0聚焦透镜的理论设计

  • 3.1 频谱分析

  • 为了加工方便并减小模态耦合对SH波传播特性的影响,这里考虑上下桩柱相同的情况,即w2=w3=w,d2=d3=d,此时单胞关于x-z平面对称.图3给出了桩柱宽度w=1.6cm、单胞宽度l=2cm、桩柱高度d由0cm增加到0.6cm时SH0的频谱图,其中:曲线代表理论得到的结果,符号代表有限元仿真软件Comsol Multiphysics的输出结果.由此可见,不同高度情况下理论和仿真结果完全吻合,再次验证了本文理论模型的正确性.除此之外,当桩柱的高度为零,即为平板时,SH0的f-k关系是一条直线,即SH0非频散;随着桩柱高度的增加,其频散特性逐渐增强,且在相同的波数情况下,f的数值逐渐减小.因此,可以预测,当桩柱升高时,SH0的相速度会逐渐降低,因此可以通过调整d的大小来改变SH波的速度,进而调控SH波的传播特性,这是本文设计基于SH0聚焦的透镜的本质.

  • 3.2 聚焦透镜的设计原理

  • 本文预设计一个矩形透镜,如图4所示,用于聚焦平面SH0波.平面SH0垂直入射并经过透镜后,会聚焦到透镜右侧的焦点上.这里,透镜的宽度为L′,焦点距离透镜右边缘的距离为Lf.由上一节的研究可知,桩柱高度的变化可以改变SH0的传播速度,所以图4所示的透镜可以由x方向桩柱高度相同、z方向桩柱高度逐渐变化的准周期结构构成.为了实现这种结构设计,本文将透镜所示区域沿z轴划分了对称的2n +1个通道,这样SH0在经过透镜时,波沿每个通道以各自的速度ci(i=0,1,2,,n)独自传播,各通道之间相互不干扰.为使SH0在焦点处聚焦,可以令其到达焦点的时间相同,即

  • L'c0+Lfcf=L'ci+Lf2+Di2cf
    (18)
  • 图3 d取不同高度时SH0模态频谱图

  • Fig.3 The frequency spectra of SH0waves for some selected d values

  • 图4 聚焦透镜的设计原理图

  • Fig.4 Principle of the lens design

  • 其中,Di为第i个通道距中轴线z=0距离;c f为SH0在平板内传播的相速度,即c f=c SH0;c 0为固定频率下中轴线通道内SH0的相速度.等式左端为SH0沿中轴线通道到达聚焦点所需时间;等式右端为SH0通过第i个通道所需的时间.利用式(18),可得到固定频率下第i个通道内SH0的相速度为

  • ci=cfcf/c0+Lf-Lf2+Di2/L'
    (19)
  • 当透镜的尺寸L′和聚焦距离Lf确定时,在某一工作频率下即可通过上式求得ci,得到ci后结合图3中不同桩柱高度的频谱图,即可得到不同通道内桩柱的高度,从而完成透镜的结构设计.如果将该透镜设计成51(即n=25)个通道,每个通道内含有10个结构尺寸相同的声子晶体单胞,于是L′=10l=0.2m;为了避免各通道之间的相互干扰,各通道之间设置0.02cm的间隔,每个通道的宽度为0.48cm;当工作频率选择为45kHz时,平板中SH0的波长λ为0.069m;假定焦距为0.3m(即L′=0.2m,Lf =0.1m),约为波长的4倍.在此基础上,应用式(19)和图3得到了各通道内相速度ci以及桩柱高度d沿z方向的分布规律,如图5所示.由此可知:速度ci由透镜中心z=0到透镜上下边缘逐渐增加,这说明SH0通过透镜时,其沿z=0的通道传播得最慢,沿着±z方向,其传播逐渐加快,最终聚焦到指定的焦点上.与之对应的,桩柱的高度在z=0处达到最大值,沿着±z方向逐渐趋近于零.

  • 图5 各通道桩柱高度d及SH0的传播相速度ci

  • Fig.5 Variations of d and ci in different channels

  • 4 透镜的工作性能分析

  • 为了验证理论设计的合理性并检验聚焦透镜的工作性能,本文在有限元分析软件Comsol Multiphysics的结构力学模块中开展频率域分析,仿真的模型如图6所示.图中:红框内矩形部分即为透镜;在距离透镜左侧0.1m处的平板截面上施加z方向的位移,用于模拟平面SH0波的激发.此外,板的四周设置了宽0.2m的完美匹配层(PML)用于模拟无穷远的边界条件,以消除板边缘产生的反射波对结果的干扰.仿真过程中采用四面体单元,PML、平板、透镜部分的最大网格尺寸分别为5mm、4mm、3mm,共划分1433690个单元;计算分析前还用更为精细的网格进行了验证,以确保计算结果收敛.

  • 图6 频域内的计算模型

  • Fig.6 The calculation model in the frequency domain

  • 仿真的结果如图7(a)所示,为了方便对比,这里同时给出了平板(不包含透镜)的情况,见图7(b).通过对比可以很清晰地看到SH0的聚焦效果.为了进一步定量化分析,现将SH0的uz2沿x轴和z轴的分布情况从图7中提取出来,见图8.平面入射的SH0,经透镜后的聚焦位置为(0.309m, 0),与理论设计值(0.3m, 0)基本吻合,稍有误差,这也说明了本文设计方法的合理性.产生这种误差的原因主要有两个方面:首先,带隙结构的分析以及透镜的设计均根据二维理论开展的,如式(1)所示,分析过程中假设z方向是无限大的,但在实际仿真过程中所用的是三维实体结构,这种处理势必会产生一定的误差;其次,通过式(19)可知,理论上要求SH0的速度沿z方向连续变化,但在设计过程中为了避免不同通道的影响,将透镜沿z方向划分了51个独立的通道,通道与通道之间用狭缝隔开,每个通道内SH0的波速是恒定的,即用51个离散的数据点去近似逼近所要求的连续变化趋势,这也会对结果产生一定的误差.除此之外,声子晶体的各向异性、SH0传播过程中的模态转换等也会对结果产生一定的影响.尽管如此,通过图7(a)和图7(b)可知,本文的设计方法是可行的,特别是在焦点处, uz2为3.1×10-6m2,是普通平板(不包含透镜)的2.2倍,在xz方向的聚焦尺寸(由焦点处uz2值的四分之一带宽决定)分别为261.1mm和56.2mm,即3.78λ和0.81λ,z方向的聚焦尺寸小于λ,聚焦效果显著,满足设计要求.这里需要指出的是:当SH0被激发并在该结构中传播时,不可避免地会有模态转换发生,但其他导波模式(如A0和S0)的位移很小,如附录中的图A所示,SH0占主导地位.

  • 图7 f=45kHz时频率域内uz2的仿真结果

  • Fig.7 Simulation results represented by uz2 in the frequency domain at f=45kHz

  • 图8 f=45kHz频域仿真数值

  • Fig.8 The simulation results in the frequency domain at f=45kHz

  • 本文设计透镜时虽然只针对45kHz这一固定的工作频率,但由图3可知,在这一频率附近不同桩柱高度情况下的频散曲线多数为直线;那么,如果工作频率稍微发生改变,SH0传播的速度不会发生大的改变,所以可以预测本文设计的透镜不仅适用于45kHz这一固定频率,在结构尺寸不变的情况下,其具有一定的工作带宽.为了验证这一推断,本文还在45kHz附近对透镜的工作性能进行了分析,其结果如图9所示.由此可见,该透镜在[42kHz, 53kHz]范围内都显示了比较好的聚焦效果.由图9还可以看出,随着工作频率的升高,焦点逐渐向透镜靠近,这是因为频率升高,透镜内不同通道内波速的差异会增大.

  • 图9 其他频率下uz2的仿真结果

  • Fig.9 The uz2 distribution for other frequencies

  • 5 结论

  • 本文基于模态叠加法,在满足动力学控制方程和边界条件的情况下,针对含上下桩柱的周期性板中SH波的传播特性建立了一个能保证收敛性及精确精度的理论模型,并通过有限元仿真对模型的正确性进行了验证.在此基础上,通过调整上下桩柱的高度所设计的透镜可实现SH0的聚焦功能,聚焦效果明显,聚焦位置准确,且具有一定的工作带宽,在工作频率附近的范围内仍然适用.

  • 限于目前检测手段的缺乏,无法自主大面积检测SH波信号,因此本文设计的透镜目前还无法通过实验加以验证.尽管如此,本文有限元仿真的结果已经足以证明这种设计方法的合理性,该方法对超声医学、无损检测、吸声降噪等应用中的能量收集都具有重要的指导意义.

  • 附录

  • 图A f=45kHz时频率域内ux2uy2的仿真结果

  • Fig.A Simulation results of ux2 and uy2 in the frequency domain at f=45kHz

  • 参考文献

    • [1] 刘德宇,李兵,赵文静,等.变波长水平剪切波电磁超声换能器设计.测控技术,2015,34(9):127~130(Liu D Y,Li B,Zhao W J,et al.Design of shear horizontal wave EMAT with variable wavelength.Measurement & Control Technology,2015,34(9):127~130(in Chinese))

    • [2] 唐秀洁.基于水平剪切波的混凝土抗压强度无损检测方法研究[硕士学位论文].大连:大连理工大学,2021(Tang X J.Research on nondestructive testing method for concrete compressive strength assessment based on shear-horizontal waves[Master Thesis].Dalian:Dalian University of Technology,2021(in Chinese))

    • [3] 阎雪冬,郭艳伟,刘礼良.基于SH波EMAT和小波分析的管道缺陷检测技术.中国石油和化工标准与质量,2020,40(16):73~74,78(Yan X D,Guo Y W,Liu L L.Pipeline defect detection technology based on SH wave EMAT and wavelet analysis.China Petroleum and Chemical Standard and Quality,2020,40(16):73~74,78(in Chinese))

    • [4] 赵亮,张金,董子华,等.斜入射SH波厚壁管道内壁裂纹检测方法.应用声学,2020,39(5):747~752(Zhao L,Zhang J,Dong Z H,et al.The detection method of cracks on the inner wall of thick wall pipes with inclined beams of SH waves.Journal of Applied Acoustics,2020,39(5):747~752(in Chinese))

    • [5] 陈帅.乳腺肿瘤超声剪切波弹性图像的计算机辅助诊断[硕士学位论文].上海:上海大学,2015(Chen S.Computer-aided diagnosis of breast tumors with ultrasonic shear-wave elastogram [Master Thesis].Shanghai:Shanghai University,2015(in Chinese))

    • [6] 孙芳,石岩,杨智,等.剪切波联合二维超声对甲状腺乳头状癌中央区淋巴结转移的预测价值.实用医学杂志,2021,37(14):1866~1871(Sun F,Shi Y,Yang Z,et al.The predictive value of shear wave elastography combined with two dimensional ultrasound in central lymph node metastasis of papillary thyroid carcinoma.The Journal of Practical Medicine,2021,37(14):1866~1871(in Chinese))

    • [7] 余敏睿,杨杰,王进勇,等.二维剪切波弹性成像测量脾硬度联合血小板/脾直径对乙型肝炎肝硬化患者中重度食管胃静脉曲张的评估价值.临床肝胆病杂志,2021,37(7):1572~1577(Yu M R,Yang J,Wang J Y,et al.Value of spleen stiffness measured by two-dimensional shear wave elastography combined with platelet count/spleen diameter ratio in evaluating moderate-to-severe gastroesophageal varices in patients with hepatitis B cirrhosis.Journal of Clinical Hepatology,2021,37(7):1572~1577(in Chinese))

    • [8] Cosgrove D O,Berg W A,Doré C J,et al.Shear wave elastography for breast masses is highly reproducible.European Radiology,2012,22(5):1023~1032

    • [9] Su P Y,Su W W,Wu L S,et al.Reduction of shear wave elastography but not shear wave dispersion after successful hepatitis C treatment with direct-acting antiviral agents.Journal of Ultrasound in Medicine,2021,40(9):1919~1926

    • [10] Li P,Biwa S.The SH0 wave manipulation in graded stubbed plates and its application to wave focusing and frequency separation.Smart Materials and Structures,2019,28(11):115004

    • [11] 张超瑾.水平剪切波的激发及与金属板中损伤相互作用[硕士学位论文].镇江:江苏大学,2017(Zhang C J.Shear horizontal wave generation and interaction with defects in metallic plates [Master Thesis].Zhenjiang:Jiangsu University,2017(in Chinese))

    • [12] 闫军生.窄板结构中超声导波传播特性研究[硕士学位论文].北京:北京工业大学,2014(Yan J S.Research on propagation characteristics of ultrasonic guided wave in narrow strips[Master Thesis].Beijing:Beijing University of Technology,2014(in Chinese))

    • [13] 魏少宏,王业南,刘頔.散射体边界的凸起结构对声子晶体带隙的影响.天津师范大学学报(自然科学版),2021,41(2):24~30(Wei S H,Wang Y N,Liu D.Effects of convex structure of scatter edge in phononic crystal on the characteristics of band gap.Journal of Tianjin Normal University(Natural Science Edition),2021,41(2):24~30(in Chinese))

    • [14] 韩星凯.基于带隙和波调控的声子晶体设计[博士学位论文].大连:大连理工大学,2020(Han X K.The design of the phononic crystal based on band gap and wave control [Ph.D Thesis].Dalian:Dalian University of Technology,2020(in Chinese))

    • [15] 温熙森,温激鸿,郁殿龙,等.声子晶体.北京:国防工业出版社,2009:6~15(Wen X S,Wen J H,Yu D L,et al.Phononic crystals.Beijing:National Defence Industry Press,2009:6~15(in Chinese))

    • [16] 刘杰,林春贯,文桂林.三重周期极小曲面夹芯结构的隔声性能研究.动力学与控制学报,2021,19(4):64~72(Liu J,Lin C G,Wen G L.Study on sound insulation performance of sandwich structures with triply periodic minimal surface cores.Journal of Dynamics and Control,2021,19(4):64~72(in Chinese))

    • [17] Rubio C,Tarrazó-Serrano D,Minin O V,et al.Wavelength-scale gas-filled cuboid acoustic lens with diffraction limited focusing.Results in Physics,2019,12:1905~1908

    • [18] Li P,Cheng L.Shear horizontal wave propagation in a periodic stubbed plate and its application in rainbow trapping.Ultrasonics,2018,84:244~253

    • [19] Lawrence A J,Goldsberry B M,Wallen S P,et al.Numerical study of acoustic focusing using a bianisotropic acoustic lens.The Journal of the Acoustical Society of America,2020,148(4):365~369

    • [20] Nikoli V,Kaltenbacher B.Sensitivity analysis for shape optimization of a focusing acoustic lens in lithotripsy.Applied Mathematics & Optimization,2017,76(2):261~301

    • [21] Qian J,Wang Y,Xia J,et al.Broadband integrative acoustic asymmetric focusing lens based on mode-conversion meta-atoms.Applied Physics Letters,2020,116(22):223505

    • [22] Hyun J,Kim Y T,Doh I,et al.Realization of an ultrathin acoustic lens for subwavelength focusing in the megasonic range.Scientific Reports,2018,8(1):9131

    • [23] Chen Z,Peng Y,Li H,et al.Efficient nonreciprocal mode transitions in spatiotemporally modulated acoustic metamaterials.Science Advances,2021,7(45):eabj1198

    • [24] Zhao J,Cui X,Bonello B,et al.Broadband sub-diffraction and ultra-high energy density focusing of elastic waves in planar gradient-index lenses.The Journal of the Mechanics and Physics of Solids,2021,150:104357

    • [25] 孙宏祥,方欣,葛勇,等.基于蜷曲空间结构的近零折射率声聚焦透镜.物理学报,2017,66(24):145~153(Sun H X,Fang X,Ge Y,et al.Acoustic focusing lens with near-zero refractive index based on coiling-up space structure.Acta Physica Sinica,2017,66(24):145~153(in Chinese))

    • [26] 曹宇杰.基于H分形声学超材料研究的声聚焦透镜设计[硕士学位论文].哈尔滨:哈尔滨工业大学,2018(Cao Y J.Design of acoustic focusing lens based on H-fractal acoustic metamaterial[Master Thesis].Harbin:Harbin Institute of Technology,2018(in Chinese))

    • [27] Jahdali A R,Wu Y.High transmission acoustic focusing by impedance-matched acoustic meta-surfaces.Applied Physics Letters,2016,108(3):031902

    • [28] Peng P,Xiao B,Wu Y.Flat acoustic lens by acoustic grating with curled slits.Physics Letters A,2014,378(45):3389~3392

    • [29] Xu Y.Analytical study of dispersion relations for shear horizontal wave propagation in plates with periodic stubs.Ultrasonics,2015,61:114~120

    • [30] Zhou W,Li H,Yuan F G.Guided wave generation,sensing and damage detection using in-plane shear piezoelectric wafers.Smart Materials and Structures,2013,23(1):015014

  • 参考文献

    • [1] 刘德宇,李兵,赵文静,等.变波长水平剪切波电磁超声换能器设计.测控技术,2015,34(9):127~130(Liu D Y,Li B,Zhao W J,et al.Design of shear horizontal wave EMAT with variable wavelength.Measurement & Control Technology,2015,34(9):127~130(in Chinese))

    • [2] 唐秀洁.基于水平剪切波的混凝土抗压强度无损检测方法研究[硕士学位论文].大连:大连理工大学,2021(Tang X J.Research on nondestructive testing method for concrete compressive strength assessment based on shear-horizontal waves[Master Thesis].Dalian:Dalian University of Technology,2021(in Chinese))

    • [3] 阎雪冬,郭艳伟,刘礼良.基于SH波EMAT和小波分析的管道缺陷检测技术.中国石油和化工标准与质量,2020,40(16):73~74,78(Yan X D,Guo Y W,Liu L L.Pipeline defect detection technology based on SH wave EMAT and wavelet analysis.China Petroleum and Chemical Standard and Quality,2020,40(16):73~74,78(in Chinese))

    • [4] 赵亮,张金,董子华,等.斜入射SH波厚壁管道内壁裂纹检测方法.应用声学,2020,39(5):747~752(Zhao L,Zhang J,Dong Z H,et al.The detection method of cracks on the inner wall of thick wall pipes with inclined beams of SH waves.Journal of Applied Acoustics,2020,39(5):747~752(in Chinese))

    • [5] 陈帅.乳腺肿瘤超声剪切波弹性图像的计算机辅助诊断[硕士学位论文].上海:上海大学,2015(Chen S.Computer-aided diagnosis of breast tumors with ultrasonic shear-wave elastogram [Master Thesis].Shanghai:Shanghai University,2015(in Chinese))

    • [6] 孙芳,石岩,杨智,等.剪切波联合二维超声对甲状腺乳头状癌中央区淋巴结转移的预测价值.实用医学杂志,2021,37(14):1866~1871(Sun F,Shi Y,Yang Z,et al.The predictive value of shear wave elastography combined with two dimensional ultrasound in central lymph node metastasis of papillary thyroid carcinoma.The Journal of Practical Medicine,2021,37(14):1866~1871(in Chinese))

    • [7] 余敏睿,杨杰,王进勇,等.二维剪切波弹性成像测量脾硬度联合血小板/脾直径对乙型肝炎肝硬化患者中重度食管胃静脉曲张的评估价值.临床肝胆病杂志,2021,37(7):1572~1577(Yu M R,Yang J,Wang J Y,et al.Value of spleen stiffness measured by two-dimensional shear wave elastography combined with platelet count/spleen diameter ratio in evaluating moderate-to-severe gastroesophageal varices in patients with hepatitis B cirrhosis.Journal of Clinical Hepatology,2021,37(7):1572~1577(in Chinese))

    • [8] Cosgrove D O,Berg W A,Doré C J,et al.Shear wave elastography for breast masses is highly reproducible.European Radiology,2012,22(5):1023~1032

    • [9] Su P Y,Su W W,Wu L S,et al.Reduction of shear wave elastography but not shear wave dispersion after successful hepatitis C treatment with direct-acting antiviral agents.Journal of Ultrasound in Medicine,2021,40(9):1919~1926

    • [10] Li P,Biwa S.The SH0 wave manipulation in graded stubbed plates and its application to wave focusing and frequency separation.Smart Materials and Structures,2019,28(11):115004

    • [11] 张超瑾.水平剪切波的激发及与金属板中损伤相互作用[硕士学位论文].镇江:江苏大学,2017(Zhang C J.Shear horizontal wave generation and interaction with defects in metallic plates [Master Thesis].Zhenjiang:Jiangsu University,2017(in Chinese))

    • [12] 闫军生.窄板结构中超声导波传播特性研究[硕士学位论文].北京:北京工业大学,2014(Yan J S.Research on propagation characteristics of ultrasonic guided wave in narrow strips[Master Thesis].Beijing:Beijing University of Technology,2014(in Chinese))

    • [13] 魏少宏,王业南,刘頔.散射体边界的凸起结构对声子晶体带隙的影响.天津师范大学学报(自然科学版),2021,41(2):24~30(Wei S H,Wang Y N,Liu D.Effects of convex structure of scatter edge in phononic crystal on the characteristics of band gap.Journal of Tianjin Normal University(Natural Science Edition),2021,41(2):24~30(in Chinese))

    • [14] 韩星凯.基于带隙和波调控的声子晶体设计[博士学位论文].大连:大连理工大学,2020(Han X K.The design of the phononic crystal based on band gap and wave control [Ph.D Thesis].Dalian:Dalian University of Technology,2020(in Chinese))

    • [15] 温熙森,温激鸿,郁殿龙,等.声子晶体.北京:国防工业出版社,2009:6~15(Wen X S,Wen J H,Yu D L,et al.Phononic crystals.Beijing:National Defence Industry Press,2009:6~15(in Chinese))

    • [16] 刘杰,林春贯,文桂林.三重周期极小曲面夹芯结构的隔声性能研究.动力学与控制学报,2021,19(4):64~72(Liu J,Lin C G,Wen G L.Study on sound insulation performance of sandwich structures with triply periodic minimal surface cores.Journal of Dynamics and Control,2021,19(4):64~72(in Chinese))

    • [17] Rubio C,Tarrazó-Serrano D,Minin O V,et al.Wavelength-scale gas-filled cuboid acoustic lens with diffraction limited focusing.Results in Physics,2019,12:1905~1908

    • [18] Li P,Cheng L.Shear horizontal wave propagation in a periodic stubbed plate and its application in rainbow trapping.Ultrasonics,2018,84:244~253

    • [19] Lawrence A J,Goldsberry B M,Wallen S P,et al.Numerical study of acoustic focusing using a bianisotropic acoustic lens.The Journal of the Acoustical Society of America,2020,148(4):365~369

    • [20] Nikoli V,Kaltenbacher B.Sensitivity analysis for shape optimization of a focusing acoustic lens in lithotripsy.Applied Mathematics & Optimization,2017,76(2):261~301

    • [21] Qian J,Wang Y,Xia J,et al.Broadband integrative acoustic asymmetric focusing lens based on mode-conversion meta-atoms.Applied Physics Letters,2020,116(22):223505

    • [22] Hyun J,Kim Y T,Doh I,et al.Realization of an ultrathin acoustic lens for subwavelength focusing in the megasonic range.Scientific Reports,2018,8(1):9131

    • [23] Chen Z,Peng Y,Li H,et al.Efficient nonreciprocal mode transitions in spatiotemporally modulated acoustic metamaterials.Science Advances,2021,7(45):eabj1198

    • [24] Zhao J,Cui X,Bonello B,et al.Broadband sub-diffraction and ultra-high energy density focusing of elastic waves in planar gradient-index lenses.The Journal of the Mechanics and Physics of Solids,2021,150:104357

    • [25] 孙宏祥,方欣,葛勇,等.基于蜷曲空间结构的近零折射率声聚焦透镜.物理学报,2017,66(24):145~153(Sun H X,Fang X,Ge Y,et al.Acoustic focusing lens with near-zero refractive index based on coiling-up space structure.Acta Physica Sinica,2017,66(24):145~153(in Chinese))

    • [26] 曹宇杰.基于H分形声学超材料研究的声聚焦透镜设计[硕士学位论文].哈尔滨:哈尔滨工业大学,2018(Cao Y J.Design of acoustic focusing lens based on H-fractal acoustic metamaterial[Master Thesis].Harbin:Harbin Institute of Technology,2018(in Chinese))

    • [27] Jahdali A R,Wu Y.High transmission acoustic focusing by impedance-matched acoustic meta-surfaces.Applied Physics Letters,2016,108(3):031902

    • [28] Peng P,Xiao B,Wu Y.Flat acoustic lens by acoustic grating with curled slits.Physics Letters A,2014,378(45):3389~3392

    • [29] Xu Y.Analytical study of dispersion relations for shear horizontal wave propagation in plates with periodic stubs.Ultrasonics,2015,61:114~120

    • [30] Zhou W,Li H,Yuan F G.Guided wave generation,sensing and damage detection using in-plane shear piezoelectric wafers.Smart Materials and Structures,2013,23(1):015014

  • 微信公众号二维码

    手机版网站二维码