en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
Siettos C I,Russo L.Mathematical modeling of infectious disease dynamics.Virulence,2013,4(4):295~ 306
参考文献 2
Bernoulli D.Essai d’une nouvelle analyse de la mortalité causée par la petite vérole.Mém.Math Phys Acad Roy Sci Paris,1766,1:1~ 45
参考文献 3
Ross R.The prevention of malaria.London:John Murray,1911,6:51~ 86
参考文献 4
Kermack W O,Mckendrick A G.Contribution to the mathematical theory of epidemics.Proceedings of the Royal Society of London Series a-Containing Papers of a Mathe-matical and Physical Character,1927,115(772):700 ~ 721
参考文献 5
Shi H J,Duan Z S,Chen G R.An SIS model with infec-tive medium on complex networks.Physica a-Statistical Mechanics and Its Applications,2008,387(8-9):2133 ~ 2144
参考文献 6
Wang H Z,Liu Z R,Xu H H.Epidemic spreading on un-correlated heterogenous networks with non-uniform trans-mission.Physica a-Statistical Mechanics and Its Applica-tions,2007,382(2):715~ 721
参考文献 7
狄根虎,许勇,徐伟,等.一类复杂流行病学模型的混沌研究.物理学报,2011,60(2):84 ~ 89(Di G H,Xu Y,Xu W,et al.Chaos for a class of complex epidemiological models.Acta Physica Sinica,2011,60(2):84 ~ 89(in Chinese))
参考文献 8
宋玉蓉,蒋国平,徐加刚.一种基于元胞自动机的自适应网络病毒传播模型.物理学报,2011,60(12):110 ~ 119(Song Y R,Jiang G P,Xu J G.An epidemic sprea-ding model in adaptive networks based on cellular automa-ta.Acta Physica Sinica,2011,60(12):110~ 119(in Chi-nese))
参考文献 9
贾祥宇,吴禹.动力学与生命科学的交叉研究进展综述.动力学与控制学报,2017,15(3):279 ~ 288(Jia X Y,Wu Y.An overview on the interdisciplinary studies of dynamics and life sciences.Journal of Dynamics and Con-trol,2017,15(3):279~ 288(in Chinese))
参考文献 10
维基百科,https://en.wikipedia.org/wiki/basic _ repro-duction_number
参考文献 11
https://www.who.int/news-room/detail/23-01-2020-state-ment-on-the-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-no-vel-coronavirus-(2019-ncov)
参考文献 12
Li Q,Med M,Guan X,et al.Early transmission dynam-ics in Wuhan,China,of novel coronavirus-infected pneu-monia.The New England Journal of Medicine,2020.DOI:10.1056/NEJMoa2001316
参考文献 13
Jonathan M R,Bridgen J R E,Cummings D A T,et al.Novel coronavirus 2019-nCoV:early estimation of epide-miological parameters and epidemic predictions.Medrxiv,2020.DOI:https://doi.org/10.1101/2020.01.23.20018549
参考文献 14
Zhao S,Lin Q,Ran J,et al.Preliminary estimation of the basic reproduction number of novel coronavirus(2019-nCoV)in China,from 2019 to 2020:A data-driven analy-sis in the early phase of the outbreak.bioRxiv,2020.DOI:https://doi.org/10.1101/2020.01.23.916395
参考文献 15
Riou J,Althaus C L.Pattern of early human-to-human transmission of Wuhan 2019-nCoV.bioRxiv,2020.DOI:https://doi.org/10.1101/2020.01.23.917351
参考文献 16
Thompson R N.2019-20 Wuhan coronavirus outbreak:In-tensesurveillance is vital for preventing sustained transmis-sion in new locations.bioRxiv,2020.DOI:https://doi.org/10.1101/2020.01.24.919159
参考文献 17
Tang B,Wang X,Li Q,et al.Estimation of the transmis-sion risk of 2019-nCov and its implication for public health interventions.SSRN,2020.DOI:10.2139/ssrn.3525558
参考文献 18
Chan J F,Yuan S F,Kok K H,et al.A familial cluster of pneumoni aassociated with the 2019 novel coronavirus indicating person-to-person transmission:a study of a fam-ily cluster.The Lancet,2020.DOI:S0140-S6736(20)30154-9.
目录contents

    摘要

    流行病动力学研究可为新型冠状病毒肺炎疫情的控制决策提供科学依据,本文简介了经典 SIR 模型及基本再生数.

    Abstract

    The study of epidemic dynamics can provide a scientific rationale for policy decisions of prevention and control of the novel coronavirus disease (COVID-19). Here we briefly introduce the classic SIR model and the basic reproduction number.

    Keywords

    epidemicdynamicsSIRmodelbasicreproductionnumbernovelcoronavirus

  • 0 引言

  • 2019 年12 月中旬,湖北省武汉市出现多例不明原因肺炎病例,2020 年1 月明确为新型冠状病毒( SARS-CoV-2) 感染导致的急性呼吸系统传染病,2 月11 日世界卫生组织将其正式命名为2019 冠状病毒病(COVID-19).

  • 随着疫情的不断蔓延,国家相继出台一系列防控措施,大批医护人员和科研工作者第一时间奋战在抗击疫情的第一线,不断取得突破性进展.

  • 1 流行病动力学模型

  • 可以感染众多人口的传染病称为流行病.人类发展的历史是一部与流行病抗争的历史[1].对流行病的认知在与其一次次的交锋中得以深化,而基于传染病传播机制的流行病动力学也应运而生,建立动力学模型模拟流行病的传播过程,预测其发展趋势,寻求对其防控的最优策略,已成为流行病学重要的理论研究方法.伴随大数据时代的到来,流行病动力学正发挥日益重要的作用,为疾病防控的精准施策和公共卫生战略的制定提供了科学依据.

  • 对流行病的模型研究最早可追溯到1766 年, 为了研究天花的传播过程,出现了第一本论述流行病动力学模型的书籍[2],1911 年R.Ross提出针对疟疾传播的动力学模型[3].发展至今已有多种模型方法,如SIR模型[4] 、复杂网络模型[5-7] 、元胞自动机模型[8]等.

  • 1926 年Kermack和McKendrick提出经典的SIR模型,根据疾病传播方式(病原体、传播途径) 以及人群的一些特性(易感性,传染性,免疫力等) 可大致将模型分为SI模型,SIR模型,SIRS模型、 SEIR模型以及SEIRS模型(部分模型示意图和动力学方程如图1) [9].其中,S、I、E、R分别代表易感者( Susceptible)、感染者( Infective)、暴露者( Ex-posed)和因康复或死亡的移出者(Removal).β 为传染率系数,γ 为因康复或死亡的移出率,δ 为移出者再次成为易感者的转化率,τ 为暴露者转为感染者的转化率,N为人口总数(假定不变).

  • SIR模型与SIRS模型的区别在于感染者恢复健康后能否获得免疫力,通常SIR模型适用于由病毒和部分细菌引起的传染病,如麻疹、流行性腮腺炎等,绝大多数康复者具有终生免疫力,而SIRS模型则较适用于由细菌、真菌或寄生虫等引起的传染病,康复者通常并不产生持久免疫力,仍可能被二次感染.

  • SIR(SIRS) 模型与SEIR( SEIRS) 模型的区别在于是否存在较长的潜伏期,并假设暴露者在潜伏期虽携带病原体,但尚不具传染性.而此次新型冠状病毒肺炎,流行病学调查显示潜伏期1-14 天,多为3-7 天,无症状感染者也可能成为传染源,但传播力较弱,因此基本符合SEIR模型的假设,如果潜伏期的传染性不可忽略,则需对模型做相应修正.

  • 这里以SIR模型为例,有如下首次积分

  • I+S-NγβlnS=constant
    (1)
  • lnS+βNγR=constant
    (2)
  • 图1 SIR模型示意图与动力学方程

  • Fig.1 Schematic view of the SIR models and ODEs

  • 据此可得到相轨线的规律,还可数值求解原初值问题得到流行病的演化过程.但经典的SIR模型基于人群均匀混合(well-mixed)假设,并未考虑人口流动及隔离等防控措施.

  • 2 基本再生数(basic reproduction number)

  • 基本再生数R0 是表征传染病的传染性的重要指标,即在初始无疫病、无干预的自然传播状态下, 引入一个感染者,在其染病期内(从感染至康复或死亡)在易感人群中产生新感染者的平均人数,可据此判断传染病流行初期发展趋势.对于SIR模型,无新感染的情况下,感染人数随时间呈指数衰减,半衰期为ln2/γ,感染者移出(康复或死亡)的概率服从到达率参数为 γ 的指数分布,染病期的期望值为1/γ,故根据基本再生数的定义

  • R0=βγSN
    (3)
  • 基本再生数与种群动力学的人均增长率(per capita growth rate)有如下关系:

  • dI/dtI=γ(R0-1)
    (4)
  • 当感染者的人均增长率 dI/dtI 为正,即R0> 1 时,传染病将会流行.随着易感者S的减少, dI/dtI 可能由正变负或零,流行病逐渐消亡( I → 0)或转为地方流行病( I → 非零稳态).由于基本再生数仅刻画初始无疫病时传染力,此时S/N=1,故SIR模型的基本再生数常记为:

  • R0=βγ
    (5)
  • 可基于确诊、治愈和死亡病例数据对R0进行估算,由(4)式可得:

  • R0=1+dI/dtγI
    (6)
  • 式中移出率 γ 也是泊松计数过程的平均到达率,γI即单位时间从感染者群体中移出的平均人数.R0越大,代表传染性越强,流行病越难控制.历史上几次典型的传染病的传播途径与基本再生数如表1 [10] :

  • 表1 典型传染病传播途径与基本再生数

  • Table 1 The routes of transmission and basic reproduction number of typical infectious diseases

  • 1月23日世界卫生组织估计新冠病毒肺炎的基本再生数在1.4-2.5 之间[11],1 月30 日发表在 «新英格兰医学杂志»的一项研究也估算出新冠病毒的R0值约为2.2 [12],此外还有多个流行病学专家的估值[13-15]和建议[16-18].

  • 3 防控与建议

  • 以上分析可知,只要能采取措施,使感染者的人均增长率 dI/dtI 小于零,或基本再生数R0小于1,则可阻断流行.从(3)式可知,减小R0主要有三条途径:

  • 1)降低传染率系数 β.措施包括隔离确诊、疑似病例及其密切接触者,深居简出,做好个人防护, 切断传播途径.

  • 2)增大康复移出率 γ.措施是全力救治患者.

  • 3)减少易感者数量S.措施是尽快研发疫苗并广泛接种.

  • 相信全国上下团结一心,必将打赢这场COV-ID-19 疫情阻击战!

  • 参考文献

    • [1] Siettos C I,Russo L.Mathematical modeling of infectious disease dynamics.Virulence,2013,4(4):295~ 306

    • [2] Bernoulli D.Essai d’une nouvelle analyse de la mortalité causée par la petite vérole.Mém.Math Phys Acad Roy Sci Paris,1766,1:1~ 45

    • [3] Ross R.The prevention of malaria.London:John Murray,1911,6:51~ 86

    • [4] Kermack W O,Mckendrick A G.Contribution to the mathematical theory of epidemics.Proceedings of the Royal Society of London Series a-Containing Papers of a Mathe-matical and Physical Character,1927,115(772):700 ~ 721

    • [5] Shi H J,Duan Z S,Chen G R.An SIS model with infec-tive medium on complex networks.Physica a-Statistical Mechanics and Its Applications,2008,387(8-9):2133 ~ 2144

    • [6] Wang H Z,Liu Z R,Xu H H.Epidemic spreading on un-correlated heterogenous networks with non-uniform trans-mission.Physica a-Statistical Mechanics and Its Applica-tions,2007,382(2):715~ 721

    • [7] 狄根虎,许勇,徐伟,等.一类复杂流行病学模型的混沌研究.物理学报,2011,60(2):84 ~ 89(Di G H,Xu Y,Xu W,et al.Chaos for a class of complex epidemiological models.Acta Physica Sinica,2011,60(2):84 ~ 89(in Chinese))

    • [8] 宋玉蓉,蒋国平,徐加刚.一种基于元胞自动机的自适应网络病毒传播模型.物理学报,2011,60(12):110 ~ 119(Song Y R,Jiang G P,Xu J G.An epidemic sprea-ding model in adaptive networks based on cellular automa-ta.Acta Physica Sinica,2011,60(12):110~ 119(in Chi-nese))

    • [9] 贾祥宇,吴禹.动力学与生命科学的交叉研究进展综述.动力学与控制学报,2017,15(3):279 ~ 288(Jia X Y,Wu Y.An overview on the interdisciplinary studies of dynamics and life sciences.Journal of Dynamics and Con-trol,2017,15(3):279~ 288(in Chinese))

    • [10] 维基百科,https://en.wikipedia.org/wiki/basic _ repro-duction_number

    • [11] https://www.who.int/news-room/detail/23-01-2020-state-ment-on-the-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-no-vel-coronavirus-(2019-ncov)

    • [12] Li Q,Med M,Guan X,et al.Early transmission dynam-ics in Wuhan,China,of novel coronavirus-infected pneu-monia.The New England Journal of Medicine,2020.DOI:10.1056/NEJMoa2001316

    • [13] Jonathan M R,Bridgen J R E,Cummings D A T,et al.Novel coronavirus 2019-nCoV:early estimation of epide-miological parameters and epidemic predictions.Medrxiv,2020.DOI:https://doi.org/10.1101/2020.01.23.20018549

    • [14] Zhao S,Lin Q,Ran J,et al.Preliminary estimation of the basic reproduction number of novel coronavirus(2019-nCoV)in China,from 2019 to 2020:A data-driven analy-sis in the early phase of the outbreak.bioRxiv,2020.DOI:https://doi.org/10.1101/2020.01.23.916395

    • [15] Riou J,Althaus C L.Pattern of early human-to-human transmission of Wuhan 2019-nCoV.bioRxiv,2020.DOI:https://doi.org/10.1101/2020.01.23.917351

    • [16] Thompson R N.2019-20 Wuhan coronavirus outbreak:In-tensesurveillance is vital for preventing sustained transmis-sion in new locations.bioRxiv,2020.DOI:https://doi.org/10.1101/2020.01.24.919159

    • [17] Tang B,Wang X,Li Q,et al.Estimation of the transmis-sion risk of 2019-nCov and its implication for public health interventions.SSRN,2020.DOI:10.2139/ssrn.3525558

    • [18] Chan J F,Yuan S F,Kok K H,et al.A familial cluster of pneumoni aassociated with the 2019 novel coronavirus indicating person-to-person transmission:a study of a fam-ily cluster.The Lancet,2020.DOI:S0140-S6736(20)30154-9.

  • 参考文献

    • [1] Siettos C I,Russo L.Mathematical modeling of infectious disease dynamics.Virulence,2013,4(4):295~ 306

    • [2] Bernoulli D.Essai d’une nouvelle analyse de la mortalité causée par la petite vérole.Mém.Math Phys Acad Roy Sci Paris,1766,1:1~ 45

    • [3] Ross R.The prevention of malaria.London:John Murray,1911,6:51~ 86

    • [4] Kermack W O,Mckendrick A G.Contribution to the mathematical theory of epidemics.Proceedings of the Royal Society of London Series a-Containing Papers of a Mathe-matical and Physical Character,1927,115(772):700 ~ 721

    • [5] Shi H J,Duan Z S,Chen G R.An SIS model with infec-tive medium on complex networks.Physica a-Statistical Mechanics and Its Applications,2008,387(8-9):2133 ~ 2144

    • [6] Wang H Z,Liu Z R,Xu H H.Epidemic spreading on un-correlated heterogenous networks with non-uniform trans-mission.Physica a-Statistical Mechanics and Its Applica-tions,2007,382(2):715~ 721

    • [7] 狄根虎,许勇,徐伟,等.一类复杂流行病学模型的混沌研究.物理学报,2011,60(2):84 ~ 89(Di G H,Xu Y,Xu W,et al.Chaos for a class of complex epidemiological models.Acta Physica Sinica,2011,60(2):84 ~ 89(in Chinese))

    • [8] 宋玉蓉,蒋国平,徐加刚.一种基于元胞自动机的自适应网络病毒传播模型.物理学报,2011,60(12):110 ~ 119(Song Y R,Jiang G P,Xu J G.An epidemic sprea-ding model in adaptive networks based on cellular automa-ta.Acta Physica Sinica,2011,60(12):110~ 119(in Chi-nese))

    • [9] 贾祥宇,吴禹.动力学与生命科学的交叉研究进展综述.动力学与控制学报,2017,15(3):279 ~ 288(Jia X Y,Wu Y.An overview on the interdisciplinary studies of dynamics and life sciences.Journal of Dynamics and Con-trol,2017,15(3):279~ 288(in Chinese))

    • [10] 维基百科,https://en.wikipedia.org/wiki/basic _ repro-duction_number

    • [11] https://www.who.int/news-room/detail/23-01-2020-state-ment-on-the-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-no-vel-coronavirus-(2019-ncov)

    • [12] Li Q,Med M,Guan X,et al.Early transmission dynam-ics in Wuhan,China,of novel coronavirus-infected pneu-monia.The New England Journal of Medicine,2020.DOI:10.1056/NEJMoa2001316

    • [13] Jonathan M R,Bridgen J R E,Cummings D A T,et al.Novel coronavirus 2019-nCoV:early estimation of epide-miological parameters and epidemic predictions.Medrxiv,2020.DOI:https://doi.org/10.1101/2020.01.23.20018549

    • [14] Zhao S,Lin Q,Ran J,et al.Preliminary estimation of the basic reproduction number of novel coronavirus(2019-nCoV)in China,from 2019 to 2020:A data-driven analy-sis in the early phase of the outbreak.bioRxiv,2020.DOI:https://doi.org/10.1101/2020.01.23.916395

    • [15] Riou J,Althaus C L.Pattern of early human-to-human transmission of Wuhan 2019-nCoV.bioRxiv,2020.DOI:https://doi.org/10.1101/2020.01.23.917351

    • [16] Thompson R N.2019-20 Wuhan coronavirus outbreak:In-tensesurveillance is vital for preventing sustained transmis-sion in new locations.bioRxiv,2020.DOI:https://doi.org/10.1101/2020.01.24.919159

    • [17] Tang B,Wang X,Li Q,et al.Estimation of the transmis-sion risk of 2019-nCov and its implication for public health interventions.SSRN,2020.DOI:10.2139/ssrn.3525558

    • [18] Chan J F,Yuan S F,Kok K H,et al.A familial cluster of pneumoni aassociated with the 2019 novel coronavirus indicating person-to-person transmission:a study of a fam-ily cluster.The Lancet,2020.DOI:S0140-S6736(20)30154-9.

  • 微信公众号二维码

    手机版网站二维码