基于模态摄动法的模型降阶与动态系统分析
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(12372006, 12302007, 12202109)


Model Order Reduction and Dynamic System Analysis Based on Modal Perturbation Method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    模态摄动法(modal perturbation method,MPM)是一种基于矩阵范数的模态截断方法,适用于具有复杂动力学系统的工程、物理、数学等领域.该方法基于模态分析理论,以无扰动状态下的模态特性为基底,引入小参数摄动项,对系统的线性刚度矩阵和非线性刚度矩阵进行逐步求解,从而量化相邻系统的相对误差.其核心思想是利用小参数特性,将高维复杂系统转化为可替代的低维系统,实现模型降阶与高效求解.该方法的基本步骤包括:首先,识别对结构动态行为有显著影响的低阶模态,构建简化的初始模型;其次,基于摄动理论对模态进行修正;最后,通过计算刚度矩阵的范数,逐步筛选出对系统具有重要贡献的关键模态.模态摄动法的优势在于能够利用基础的数学理论简化复杂的模态分析问题,具有计算精度高、适用范围广的特点.然而,该方法对小参数的选取确定有一定要求,在大扰动情况下可能需要较高的计算成本.与Galerkin方法相比,模态摄动法在处理参数激励下的拉索模态截断问题时,仅需少量模态即可达到11阶Galerkin法的精度,计算效率提升显著.

    Abstract:

    The modal perturbation method(MPM) is a modal truncation technique based on matrix norms, applicable to complex dynamic systems in engineering, physics, mathematics, and related fields. This method is grounded in modal analysis theory, using the modal characteristics of an unperturbed state as a basis and introducing small parameter perturbations to iteratively solve the system’s linear and nonlinear stiffness matrices, thereby quantifying the relative error between adjacent systems. The core idea is to leverage the properties of small parameters to transform a high-dimensional complex system into an equivalent low-dimensional system, achieving model order reduction and efficient computation. The key steps of the method include: first, identifying low-order modes that significantly influence structural dynamic behavior to construct a simplified initial model; second, refining the modes based on perturbation theory; and finally, progressively screening critical modes that contribute substantially to the system by computing the norm of the stiffness matrix. The advantages of the MPM lie in its ability to simplify complex modal analysis problems using fundamental mathematical theory, offering high computational accuracy and broad applicability. However, the method imposes certain requirements on the selection of small parameters, and it may incur higher computational costs under large perturbations. Compared with the Galerkin method, the MPM can achieve the accuracy of the 11th-order Galerkin method with only a few modes when dealing with the modal truncation of cables under parametric excitation, and the calculation efficiency is significantly improved.

    参考文献
    相似文献
    引证文献
引用本文

袁泉,康厚军,苏潇阳,丛云跃.基于模态摄动法的模型降阶与动态系统分析[J].动力学与控制学报,2025,23(11):81~90; Yuan Quan, Kang Houjun, Su Xiaoyang, Cong Yunyue. Model Order Reduction and Dynamic System Analysis Based on Modal Perturbation Method[J]. Journal of Dynamics and Control,2025,23(11):81-90.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-09-14
  • 最后修改日期:2025-10-11
  • 录用日期:
  • 在线发布日期: 2025-11-28
  • 出版日期:
文章二维码

微信公众号二维码

手机版网站二维码