基于双场动力学降阶模型的高效预测与最优控制
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(12522201,12494563)


Efficient Prediction and Optimal Control Based on the Two-Field Dynamics Reduced-Order Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    大变形结构动力学模型常用于模拟大型化、轻量化结构的瞬态响应,但其几何非线性特征使高效而精确的建模与控制面临挑战.基于数据驱动的本征正交分解(POD)与Hellinger-Reissner变分原理,可构造大变形结构的双场动力学降阶模型.该模型引入先验的应力信息,并将位移基推导的刚度不变量阶数由四阶降低至三阶,由此提升了瞬态动力学降阶计算的精度与效率.在双场动力学降阶模型基础上,进一步探讨柔性结构动响应的高效预测与最优控制问题,嵌入模型预测控制框架,实现轨迹优化控制.通过细长杆系与机翼骨架两个结构算例表明,该方法在保证精度的同时显著降低了在线计算成本,相较于传统位移POD降阶方法,在精度与实时性方面均表现出更优性能,并展现出良好的模型预测控制适用性.

    Abstract:

    Dynamic models of large-deformation structures are widely used to simulate the transient response of large-scale and lightweight structures, but their geometric nonlinearity poses significant challenges for efficient and accurate modeling and control. The two-field reduced-order model (ROM) for large-deformation structures can be constructed, via data-driven Proper Orthogonal Decomposition (POD) with the Hellinger-Reissner variational principle. This model incorporates prior stress information and reduces the order of stiffness invariants derived from displacement bases from fourth to third order, thereby improving both the accuracy and efficiency of transient dynamic model reduction. Based on the two-field ROM, this work further investigates efficient prediction and optimal control of flexible structural responses by embedding the ROM into a model predictive control (MPC) framework to achieve trajectory optimization and tracking. Case studies on a slender beam system and a wing skeleton demonstrate that the proposed approach significantly reduces online computational cost while maintaining accuracy, and outperforms traditional displacement-based POD methods in both efficiency and accuracy, showing strong applicability to MPC-based control of nonlinear flexible structures.

    参考文献
    相似文献
    引证文献
引用本文

周文祥,罗凯.基于双场动力学降阶模型的高效预测与最优控制[J].动力学与控制学报,2025,23(11):72~80; Zhou Wenxiang, Luo Kai. Efficient Prediction and Optimal Control Based on the Two-Field Dynamics Reduced-Order Model[J]. Journal of Dynamics and Control,2025,23(11):72-80.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-09-02
  • 最后修改日期:2025-09-24
  • 录用日期:
  • 在线发布日期: 2025-11-28
  • 出版日期:
文章二维码

微信公众号二维码

手机版网站二维码