基于改进的自适应扩展卡尔曼滤波算法的道路坡度估算
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Road Slope Estimation Based on Improved Adaptive Extended Kalman Filter Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着智能驾驶技术的不断发展,对高精度的车辆状态信息的需求日渐迫切.道路坡度是车辆行驶的关键参数,对车辆的动力学控制有着重要影响.高精度低延迟的道路坡度估算是精确控制的前提,可以有效提升车辆的智能化水平.自适应扩展卡尔曼滤波(AEKF)是道路坡度估计的常用算法,但其在有着不同噪声条件的复杂工况中存在一定的局限性.本文提出了一种改进的自适应扩展卡尔曼滤波算法,通过动态噪声缩放因子的设置,提高了复杂工况中道路坡度的估算精度.通过双移线工况和稳态绕圆工况的仿真测试,验证了本文方法的有效性,实现了均方根误差RMSE在2°以内的道路坡度估算精度.

    Abstract:

    With the continuous development of intelligent driving technology, the demand for high-precision vehicle status information is becoming increasingly urgent. Road gradient is a key parameter for vehicle operation, having a significant impact on the vehicle's dynamics control. High-precision and low-latency road gradient estimation is a prerequisite for precise control, which can effectively enhance the intelligence level of the vehicle. Adaptive extended Kalman filter (AEKF) is a commonly used algorithm for road gradient estimation, but it has certain limitations in complex operating conditions with different noise levels. This paper proposes an improved adaptive Kalman filter algorithm, which enhances the estimation accuracy of road gradients in complex conditions by setting dynamic noise scaling factors. Through simulation tests under double lane change conditions and steady-state circular motion conditions, the effectiveness of the proposed method is verified, achieving a road gradient estimation accuracy with a root mean square error (RMSE) of less than 2°.

    参考文献
    相似文献
    引证文献
引用本文

康元顺,张东珉,朱福堂.基于改进的自适应扩展卡尔曼滤波算法的道路坡度估算[J].动力学与控制学报,2025,23(10):77~86; Kang Yuanshun, Zhang Dongmin, Zhu Futang. Road Slope Estimation Based on Improved Adaptive Extended Kalman Filter Algorithm[J]. Journal of Dynamics and Control,2025,23(10):77-86.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-20
  • 最后修改日期:2025-04-30
  • 录用日期:
  • 在线发布日期: 2025-10-29
  • 出版日期:
文章二维码

微信公众号二维码

手机版网站二维码