基于强化学习的仿蠕虫机器人驱动排布优化研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(12472022)


Optimization of Actuation Configuration in Earthworm-Like Robots via Reinforcement Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对多单元仿蠕虫机器人驱动优化问题,本文提出了一种基于强化学习的智能配置方法.首先建立多单元仿蠕虫机器人的动力学模型,并将驱动排布问题形式化为马尔可夫决策过程.通过设计多重离散动作空间,显著降低了计算成本.提出融合运动速度和能耗约束的奖励函数,有效平衡了探索与开发矛盾.针对驱动器受限条件,提出的动作掩蔽机制实现了硬性约束下的高效策略搜索.研究发现:(1)全驱动时中部对称激活最优;(2)约束条件下呈现"后部优先、向心聚集"的排布规律.

    Abstract:

    This study presents a reinforcement-learning-based intelligent configuration method for optimizing the actuation of multi-segment earthworm-like robots. First, a dynamic model of the multi-segment robotic system is established, and the actuator arrangement problem is formulated as a Markov decision process. By designing a multi-discrete action space, computational costs are significantly reduced. A reward function integrating locomotion speed and energy consumption constraints is proposed to effectively balance exploration and exploitation. For actuator-limited conditions, an action masking mechanism enables efficient policy search under hard constraints. Key findings include: (1) Midline-symmetric actuation yields optimal performance under full-drive conditions; (2) A “posterior-priority, centripetal-clustering” distribution pattern emerges under constrained actuation.

    参考文献
    相似文献
    引证文献
引用本文

俞云潇,张舒.基于强化学习的仿蠕虫机器人驱动排布优化研究[J].动力学与控制学报,2025,23(10):35~44; Yu Yunxiao, Zhang Shu. Optimization of Actuation Configuration in Earthworm-Like Robots via Reinforcement Learning[J]. Journal of Dynamics and Control,2025,23(10):35-44.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-04-23
  • 最后修改日期:2025-05-13
  • 录用日期:
  • 在线发布日期: 2025-10-29
  • 出版日期:
文章二维码

微信公众号二维码

手机版网站二维码