含非线性振子简支梁横向振动特性研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

海军工程大学自主研发项目资助(2022507090)


Investigation of Transverse Vibration Characteristics of the Simply Supported Beam with Nonlinear Resonators
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对简支梁结构横向振动控制问题,开展了含非线性振子的简支梁横向振动特性研究.首先建立了非线性振子-梁耦合振动模型,基于Hamilton原理推导了系统的非线性振动微分方程.采用增量谐波平衡法和弧长延拓法,得到了系统幅频响应完整的半解析解,并结合Floquet理论对解的稳定性进行分析.研究结果表明:非线性振子在合适参数取值下使得简支梁一阶模态无量纲峰值由3.30降低至0.26,降幅达92.12%,且未产生新的共振峰;非线性振子的非线性刚度和线性刚度共同决定其减振频率位置,其中线性刚度的存在易在目标频段诱发新的共振峰.

    Abstract:

    In this paper, the investigation of transverse vibration characteristics of the simply supported beam with nonlinear resonators is carried out to address the problem of transverse vibration control of the simply supported beam structure. Firstly, a nonlinear resonator-beam coupling vibration model is established, and the nonlinear vibration differential equations of the system are derived based on Hamilton's principle. The complete semi-analytical solution of the amplitude-frequency response of the system is obtained by using the incremental harmonic balance method and the arc length extension method, and the stability of the solution is analysed by combining with the Floquet theory. The investigation results show that the nonlinear resonator reduces the dimensionless peak of the first-order modes of the simply supported beam from 3.30 to 0.26 under the appropriate parameter values, with a reduction of 92.12%, and does not generate new resonance peaks; the nonlinear stiffness and linear stiffness of the nonlinear resonator determine the vibration reduction frequency location, and the existence of linear stiffness is easy to induce new resonance peaks in the target frequency band.

    参考文献
    相似文献
    引证文献
引用本文

周奇郑,郭彭,杨军.含非线性振子简支梁横向振动特性研究[J].动力学与控制学报,2025,23(9):37~48; Zhou Qizheng, Guo Peng, Yang Jun. Investigation of Transverse Vibration Characteristics of the Simply Supported Beam with Nonlinear Resonators[J]. Journal of Dynamics and Control,2025,23(9):37-48.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-04-07
  • 最后修改日期:2025-05-23
  • 录用日期:
  • 在线发布日期: 2025-09-30
  • 出版日期:
文章二维码

微信公众号二维码

手机版网站二维码