基于BP神经网络PID控制参数自适应优化
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

军队装备综合研究项目(24AZ0502)


Adaptive Optimization of PID Control Parameters Based on BP Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本研究针对传统的反向传播(BP)神经网络比例积分微分(PID)算法存在的波动振荡、容易发散的问题,提出改进方法.首先采用He初始化方法对神经网络进行初始化,并对学习率进行衰减,同时对算法梯度进行裁剪.然后,在此基础上继续对比研究不同激活函数(Sigmoid、Tanh、ReLU和Leaky ReLU)和不同平滑技术(指数平滑、移动平均、Savitzky-Golay滤波器和Butterworth滤波器)对算法性能的影响.最后,采用极端激励对平滑器的鲁棒性进行测试.结果表明:相较于传统的Sigmoid激活函数,使用ReLU、Leaky ReLU和Tanh激活函数具有更强的稳定性,并且Leaky ReLU激活函数综合性能最好;在平滑效果方面,指数平滑和Savitzky-Golay滤波器具有更明显的优势,更适合于需要快速响应和精确平滑的应用领域;平滑技术可以使算法更快恢复稳定,提高算法稳定性.

    Abstract:

    In this study, an improved method is proposed to solve the problems of fluctuating oscillation and easy divergence of the traditional back propagation (BP) neural network proportional integral differential (PID) algorithm. Firstly, the He initialization method is used to initialize the neural network, the learning rate is attenuated, and the algorithm gradient is clipped. Then, on this basis, the effects of different activation functions (Sigmoid, Tanh, ReLU and Leaky ReLU) and different smoothing techniques (exponential smoothing, moving average, Savitzky-Golay filter and Butterworth filter) on the performance of the algorithm are further compared. Finally, the robustness of the smoother is tested by extreme disturbance. The results show that compared with the traditional Sigmoid activation function, the ReLU, Leaky ReLU and Tanh activation functions have stronger stability, and the Leaky ReLU activation function has the best comprehensive performance. In terms of smoothing effect, exponential smoothing and Savitzky-Golay filters have more obvious advantages and are more suitable for applications that require fast response and precise smoothing. The smoothing techniques can make the algorithm recover faster and improve the stability of the algorithm.

    参考文献
    相似文献
    引证文献
引用本文

张硕,骆星九,张孝强,杨猛,陈立群.基于BP神经网络PID控制参数自适应优化[J].动力学与控制学报,2025,23(9):10~17; Zhang Shuo, Luo Xingjiu, Zhang Xiaoqiang, Yang Meng, Chen Liqun. Adaptive Optimization of PID Control Parameters Based on BP Neural Network[J]. Journal of Dynamics and Control,2025,23(9):10-17.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-15
  • 最后修改日期:2025-02-25
  • 录用日期:
  • 在线发布日期: 2025-09-30
  • 出版日期:
文章二维码

微信公众号二维码

手机版网站二维码