含裂纹齿轮系统混沌运动的ELM智能优化控制策略
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(51665027),甘肃省自然科学基金资助项目(20JR5RA406),甘肃省青年科技基金计划(21JR7RA328),上海应用技术大学协同创新基金项目(XTCX2023-20)


Intelligent Optimal Control Strategy of ELM for Chaotic Motion of Cracked Gear System
Author:
Affiliation:

Fund Project:

-

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对含裂纹齿轮传动系统的混沌动力学进行了分析,提出了一种混沌控制策略.首先建立含裂纹三自由度齿轮系统模型,分析裂纹演变对啮合刚度的影响,进而分析了参数ω-ξ耦合作用下系统动力学响应的变化规律,并画出系统参数平面上的运动分布图、位移幅值云图等,分析获取了混沌运动的参数分析判据,同时通过多初值分岔图探究吸引子共存的规律.其次针对部分参数区间混沌发生的区域,基于极限学习机(extreme learning machine,ELM)设计混沌控制器,构建了控制性能指标函数,利用混沌控制器输出微小扰动施加于系统的可控参数ω和ξ,将混沌运动控制为预期的周期运动,同时将基于精英选择策略的黏菌优化算法(elite selection strategy slime mould algorithm,ESMA)算法与ELM相结合,优化混沌控制器的参数.然后依据吸引子共存规律,通过力反馈控制,将系统稳定到位移幅值更小的周期轨道.最后通过仿真验证了所提出控制策略的有效性.

    Abstract:

    The chaotic dynamics of a crack-containing gear transmission system were analyzed, and a chaotic control strategy was proposed. Firstly, a model of a crack-containing three-degree-of-freedom gear system was established to analyze the effect of crack evolution on meshing stiffness. Subsequently, the change rule of the system dynamics response under the action of parameter ω-ξ coupling was analyzed. The distribution map of motion on the parameter plane of the system, the displacement amplitude cloud map, and so on were drawn. The correlation between chaotic motions and specific parameter conditions of the system and the characteristics of their manifestation were analyzed. Secondly, the law of the coexistence of attractors was investigated through the multi-primary-value bifurcation map. Aiming at the region where chaos occurred in some parameter intervals, a chaotic controller was designed based on Extreme Learning Machine (ELM). A control performance index function was constructed to control the chaotic motion into the expected periodic motion by using the output of the chaotic controller to output tiny perturbations applied to the controllable parameters ω and ξ of the system. Meanwhile, the Elite Selection Strategy Slime Mould Algorithm (ESMA) was combined with ELM to optimize the parameters of the chaotic controller. Additionally, based on the attractor coexistence law, the system was stabilized to a periodic orbit with a smaller displacement amplitude by force feedback control. Finally the effectiveness of the proposed control strategy was ultimately verified by simulation.

    参考文献
    相似文献
    引证文献
引用本文

卫晓娟,翟英栋,李小齐,李宁洲,姬毓君,丁旺才.含裂纹齿轮系统混沌运动的ELM智能优化控制策略[J].动力学与控制学报,2025,23(8):68~79; Wei Xiaojuan, Zhai Yingdong, Li Xiaoqi, Li Ningzhou, Ji Yujun, Ding Wangcai. Intelligent Optimal Control Strategy of ELM for Chaotic Motion of Cracked Gear System[J]. Journal of Dynamics and Control,2025,23(8):68-79.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-02
  • 最后修改日期:2025-01-24
  • 录用日期:
  • 在线发布日期: 2025-09-04
  • 出版日期:
文章二维码

微信公众号二维码

手机版网站二维码