相对运动动力学的任意阶Gauss原理
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(12272248, 11972241)


The Arbitrary Order Gauss Principle of Relative Motion Dynamics
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    研究相对运动动力学的任意阶Gauss原理.首先,提出相对加速度的任意阶导数空间的概念,给出此空间中广义Gauss变分的变分规则,在此基础上从质点相对运动动力学方程出发,给出双面理想约束系统相对运动动力学的任意阶Gauss原理.通过定义任意阶广义拘束函数,给出双面理想约束系统相对运动动力学的任意阶Gauss最小拘束原理.其次,研究广义坐标下相对运动动力学的任意阶Gauss原理,给出了原理Appell形式,Lagrange形式和Nielsen形式.然后,研究了所得原理对非完整力学的应用.给出了任意阶非完整系统相对运动的Gauss最小拘束原理及其广义坐标形式.最后,结合具体算例介绍如何利用相对运动的任意阶Gauss最小拘束原理建立高阶非完整系统的运动方程.

    Abstract:

    The arbitrary order Gauss principle of relative motion dynamics is studied.Firstly, the concept of arbitrary order derivative space of relative acceleration is proposed, and the variational rules of generalized Gauss variation in this space are given.On this basis, the arbitrary order Gauss principle for dynamics systems in relative motion with two-sided ideal constraints is given from the kinetic equation of relative motion of particles.By defining the arbitrary order generalized compulsion function, the arbitrary order Gauss least compulsion principle for dynamics systems in relative motion with two-sided ideal constraints is established.Secondly, the arbitrary order Gauss principle of relative motion dynamics in generalized coordinates is studied, and its Appell form, Lagrange form and Nielsen form are given.Thirdly, the application of the obtained principle to nonholonomic mechanics is studied.The Gauss least compulsion principle and its generalized coordinate form for nonholonomic systems of arbitrary order in relative motion are given.Finally, we introduce how to establish the motion equations of higher order nonholonomic systems in relative motion by using the Gauss least compulsion principle of arbitrary order.

    参考文献
    相似文献
    引证文献
引用本文

张毅.相对运动动力学的任意阶Gauss原理[J].动力学与控制学报,2025,23(6):1~8; Zhang Yi. The Arbitrary Order Gauss Principle of Relative Motion Dynamics[J]. Journal of Dynamics and Control,2025,23(6):1-8.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-04
  • 最后修改日期:2024-09-28
  • 录用日期:
  • 在线发布日期: 2025-07-04
  • 出版日期:
文章二维码

微信公众号二维码

手机版网站二维码