基于河马算法的贝叶斯分类技术研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然基金资助项目(62173341),江苏省自然科学基金(BK20231487)


Research on Bayesian Classification Technology Based on Hippopotamus Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    朴素贝叶斯分类器凭借其坚实的概率理论基础,在处理包含不确定特征和噪声干扰的数据集时展现出了显著的分类优势.随着社会数据的复杂性日益攀升,以占比量来衡量先验概率的方法在一定程度上限制了朴素贝叶斯分类器的性能表现.先验概率的构造是贝叶斯分类研究中的重要问题,是决定朴素贝叶斯分类准确率的重要因素.如何有效估计和构造最优先验概率逐渐成为学者们关注的研究议题.为此,本文引入t分布变异和自适应权重对河马优化算法(HOA)的个体更新公式进行改进,并基于此提出了一种结合优化算法、训练样本和测试样本构造贝叶斯最优先验的优化方法,得到了较好的分类性能.具体流程为:采集系统数据并划分为训练集、验证集和测试集,以训练集得到的模型参数作为验证集的贝叶斯分类器初始输入,再以分类准确率为目标函数,采用改进河马优化算法搜寻验证集的贝叶斯最优先验,最后将寻优结果作为测试集的先验,得到分类准确率.通过切换电路系统仿真来测试所提出的方法,并与其他主流分类算法对比,结果显示所提方法表现出较高的分类准确性.

    Abstract:

    The Naive Bayes classifier, with its solid foundation in probability theory, exhibits significant classification advantages when dealing with datasets containing uncertain features and noise interference. With the increasing complexity of social data, the method of measuring prior probability based on proportion has to some extent limited the performance of Naive Bayes classifiers. The construction of prior probabilities is an important issue in Bayesian classification research and a crucial factor in determining the accuracy of Naive Bayes classification. How to effectively estimate and construct the highest priority probability has gradually become a research topic of concern for scholars. Therefore, this article introduces t distribution variation and adaptive weights to improve the individual update formula of Hippopotamus Optimization Algorithm (HOA). Based on this improvement, an optimization approach is proposed, which integrates the optimized algorithm with the construction of Bayesian optimal priors using both training and testing samples. This method has achieved superior classification performance. The specific process is to collect system data and divide it into training set, validation set, and test set. The model parameters obtained from the training set are used as the initial input for the Bayesian classifier in the validation set. Then, with classification accuracy as the objective function, the improved Hippopotamus Optimization Algorithm is used to search for the Bayesian optimal prior in the validation set. Finally, the optimization result is used as the prior in the test set to obtain the classification accuracy. The proposed method was tested by switching circuit system simulations and compared with other mainstream classification algorithms. The results showed that the proposed method exhibited high classification accuracy.

    参考文献
    相似文献
    引证文献
引用本文

韩俊威,王荣浩,黄世沛,吴畏,黄俊华,骆茂森.基于河马算法的贝叶斯分类技术研究[J].动力学与控制学报,2025,23(5):69~81; Han Junwei, Wang Ronghao, Huang Shipei, Wu Wei, Huang Junhua, Luo Maosen. Research on Bayesian Classification Technology Based on Hippopotamus Algorithm[J]. Journal of Dynamics and Control,2025,23(5):69-81.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-03
  • 最后修改日期:2024-10-22
  • 录用日期:
  • 在线发布日期: 2025-06-11
  • 出版日期:
文章二维码

微信公众号二维码

手机版网站二维码