基于伴随方程的时滞系统参数辨识框架及其应用
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目 (12272167)


Adjoint Equation Based Framework and Application for Delayed System Parameter Identification
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    时滞微分方程广泛应用于描述系统当前状态与过去状态之间的动态关联,涵盖生物力学、工程学、物理学等多个领域,尤其适用于含时滞的复杂系统建模.由于时滞效应能够显著影响系统的动态行为、控制效果和稳定性,准确识别时滞参数成为动力学系统研究中的核心挑战之一.为提高辨识精度和效率,本文提出了一种基于伴随方程和梯度下降算法的时滞微分方程参数辨识算法.该算法利用伴随方程的解析特性,通过逆向求解,精确计算系统响应对参数的梯度,从而实现高效的参数更新.本文给出了算法的数学推导,并基于Python平台开发对应计算框架,使用自动更新,动态插值的解类并封装了一个支持求解时变参数的时滞微分方程求解器.利用简化算法和并行计算,优化求解流程并降低计算复杂度,增强实际应用中的可操作性.为了验证算法的有效性,本文以一个二自由度非线性振子系统为例,进行了数值仿真实验.仿真结果表明,该方法能够准确识别系统的时滞参数.

    Abstract:

    Delay differential equations are widely used to describe dynamic connections between system’s current states and its past states. They are particularly suited for modelling complex systems with delays, such as dynamic systems arisen from biology, engineering and physics. Since delay effects can significantly impact system dynamic behaviour, control performance and stability, accurate identification of delay parameters has become a core challenge. To improve both accuracy and efficiency, this study proposes a delay parameter identification algorithm based on adjoint equations and the gradient descent method. By leveraging the analytical properties of adjoint equations, this method solves the adjoint system backward in time, allowing for the precise calculation of the gradient of the system response with respect to the parameters, thus facilitating efficient parameter updates. This study details the mathematical derivation of the algorithm and develops a computational framework on the Python platform, incorporating automatic updates, dynamic interpolation, and a solver for delay differential equations with time-varying parameters. By simplifying the algorithm and utilizing parallel computing, the solution process is optimized to reduce computational complexity, enhancing its practical applicability. To validate the effectiveness of the algorithm, a numerical identification experiment is conducted for a two-degree-of-freedom nonlinear spring-mass system. The results demonstrate that the method accurately identifies the system delay parameters while maintaining a low error margin.

    参考文献
    相似文献
    引证文献
引用本文

陈靖天,张丽.基于伴随方程的时滞系统参数辨识框架及其应用[J].动力学与控制学报,2025,23(5):36~43; Chen Jingtian, Zhang Li. Adjoint Equation Based Framework and Application for Delayed System Parameter Identification[J]. Journal of Dynamics and Control,2025,23(5):36-43.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-30
  • 最后修改日期:2024-10-22
  • 录用日期:
  • 在线发布日期: 2025-06-11
  • 出版日期:
文章二维码

微信公众号二维码

手机版网站二维码