面向大数据压缩存储桥梁损伤定位的深度卷积自编码方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(52208189),江苏省研究生科研创新计划项目(KYCX23_3338),江苏省高等学校基础科学(自然科学)面上项目(21KJB580006)


A Deep Convolutional Autoencoder Method For Bridge Damage Localization for Big Data Compression Storage
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决桥梁健康监测数据体量大、存储难的问题,提出基于深度卷积自编码的数据压缩方法,并通过设计损伤指标,利用压缩数据识别结构损伤位置,保证数据压缩的有效性.首先,设计合适的深度卷积自编码模型,以桥梁健康状态下的加速度自相关函数作为训练数据,得到合适的模型参数.其次,将实时监测的加速度自相关函数输入训练好的深度卷积自编码模型,得到加速度自相关压缩数据.然后,计算健康状态和实时状态下压缩数据的欧氏距离,作为损伤指标,每个损伤指标对应于相应的位置.接着,根据指标是否变化判断相应位置的损伤状况.最后,采用简支梁和连续梁的数值模型及简支梁试验模型对该方法进行了有效性和抗噪性的验证.采用的损伤指标可通过压缩数据识别结构损伤位置,具有一定抗噪性,简支梁20%噪声、连续梁在10%高斯白噪声下可识别损伤位置.

    Abstract:

    To solve the problem of large volume and storage difficulty of bridge health monitoring data, the deep convolutional autoencoder is proposed to compress data. By designing a damage indicator, structural damage location is identified from the compressed data, thereby ensuring the effectiveness of the data compression. Firstly, an appropriate deep convolutional autoencoder model is designed, and the autocorrelation functions of acceleration responses under the healthy state of the bridge are used as training data to obtain appropriate model parameters. Secondly, the real-time monitored acceleration autocorrelation functions are input into the trained deep convolutional autoencoder model to obtain compressed data. Then, the Euclidean distance between the compressed data under both healthy and real-time states is calculated as a damage indicator, with each damage indicator corresponding to a specific structural location. Next, the damage condition at the corresponding location is determined according to whether the indicator changes. Finally, numerical models of a simply supported beam and a continuous beam, as well as a simply supported beam test in laboratory, are adopted to verify the effectiveness and noise robustnessof the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

钟紫婷,刘晨光,常军.面向大数据压缩存储桥梁损伤定位的深度卷积自编码方法[J].动力学与控制学报,2025,23(12):46~53; Zhong Ziting, Liu Chenguang, Chang Jun. A Deep Convolutional Autoencoder Method For Bridge Damage Localization for Big Data Compression Storage[J]. Journal of Dynamics and Control,2025,23(12):46-53.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-19
  • 最后修改日期:2025-04-12
  • 录用日期:
  • 在线发布日期: 2025-12-23
  • 出版日期:
文章二维码

微信公众号二维码

手机版网站二维码