一类强非线性系统共振周期解的渐近分析
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

湖南省自然科学基金资助项目(01JJY2007)


Asymptotic analysis for resonance cycle solution of a type of strongly nonlinear systems
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    强非线性系统经引入参数变换,并在一定的假设条件下,可转化为弱非线性系统,将其解展成为改进的傅立叶级数后,利用参数待定法可方便地求出强非线性系统的共振周期解.研究了Duffing方程的主共振、Van der Pol方程的3次超谐共振和Van der Pol-Mathieu方程的1/2亚谐共振周期解.这些例子表明近似解与数值解非常吻合.

    Abstract:

    Based on a certain hypothesis,the strongly nonlinear system was transformed into a weakly nonlinear system by introducing a parameter transformation.Its solutions were expanded into the improved Fourier series,and the resonance cycle solutions were conveniently obtained by the undetermined parameter method.Using the method,we studied the principal resonance cycle solutions of the Duffing equation,the 3 ultraharmonic resonance cycle solutions of the Van der Pol-Mathieu equation.The examples showed that the approximate solutions closely coincided with numerical solutions.

    参考文献
    相似文献
    引证文献
引用本文

彭献,陈自力.一类强非线性系统共振周期解的渐近分析[J].动力学与控制学报,2004,2(1):46~50; Peng Xian, Chen Zili. Asymptotic analysis for resonance cycle solution of a type of strongly nonlinear systems[J]. Journal of Dynamics and Control,2004,2(1):46-50.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2004-02-06
  • 最后修改日期:2004-02-20
  • 录用日期:
  • 在线发布日期:
  • 出版日期:

微信公众号二维码

手机版网站二维码