Poincaré-Chetaev变量下广义Routh方程的对称性与守恒量
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(10272021)


Symmetries and conserved quantities for generalized routh's equations in poincare-chetaev vabiables
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    根据Rumyantsev提出的Poincare-Chetaev变量下的广义Routh方程,用无限小变换的方法研究它的对称性与守恒量,得到守恒量存在的条件和形式.该结果比以往的Poincare-Chetaev方程的相关结论更一般.最后,举例说明结果的应用.

    Abstract:

    According to the generalized Routh's equations in Poincare-Chetaev variables proposed by Rumyantsev,the symmetries and the conserved quantities of the equations were studied by using the method of infinitesimal transformation.The exixtence condition and the form of the conserved quantities were obtained.This result is more general than the past corresponding conclusions for Poincare-Chetaev equations.Two examples were given to illustrate the application of the results.

    参考文献
    相似文献
    引证文献
引用本文

吴惠彬. Poincaré-Chetaev变量下广义Routh方程的对称性与守恒量[J].动力学与控制学报,2004,2(1):37~39; Wu Huibin. Symmetries and conserved quantities for generalized routh's equations in poincare-chetaev vabiables[J]. Journal of Dynamics and Control,2004,2(1):37-39.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2003-10-13
  • 最后修改日期:2004-01-14
  • 录用日期:
  • 在线发布日期:
  • 出版日期:

微信公众号二维码

手机版网站二维码