本文引用格式:刘畅,王聪,刘世兴,郭永新.Lagrange子流形理论在约束力学系统正则变换和勒让德变换中的应用[J].动力学与控制学报,2019,17(5):439~445;   Liu Chang,Wang Cong,Liu Shixing,Guo Yongxin.Application of Lagrange submanifold theory in the canonical transformation and Legendre transformation of constrained mechanical systems[J].Journal of Dynamics and Control,2019,17(5):439-445. Lagrange子流形理论在约束力学系统正则变换和勒让德变换中的应用    点此下载全文 辽宁大学 物理学院, 沈阳 110036;大连理工大学 工业装备结构分析国家重点实验室, 大连 116024,辽宁大学 物理学院, 沈阳 110036,辽宁大学 物理学院, 沈阳 110036,辽宁大学 物理学院, 沈阳 110036 基金项目：国家自然科学基金资助项目(11772144,11572145,11472124) DOI：10.6052/1672-6553-2019-070 摘要： Lagrange方程与Hamilton方程之间的勒让德变换理论和Hamilton方程的正则变换理论在分析力学中具有重要的地位,从局域坐标的角度很难找到勒让德变换和正则变换之间的相关性. 本文主要基于辛流形的Lagrange子流形理论从全局上给出正则变换理论和勒让德变换理论的统一几何解释,进而在几何力学的角度清晰的描述Hamilton系统的正则变换和Lagrange方程与Hamilton方程之间的勒让德变换的几何结构. 关键词：约束力学系统,Lagrange子流形,辛流形,正则变换,勒让德变换 Application of Lagrange submanifold theory in the canonical transformation and Legendre transformation of constrained mechanical systems    Download Fulltext Fund Project: Abstract: Both the Legendre transformation between Lagrange′s equations and Hamilton′s equations and the canonical transformation theory of Hamilton′s equations play an important role in analytical mechanics. There seems to be no relationship between them from a local perspective. In this paper, based on the Lagrangian submanifold theory of symplectic manifold, the unified geometric interpretation of the canonical transformation theory and the Legendre transformation theory was given globally. Then, by utilizing geometric mechanics, the geometric structure of the canonical transformation for a Hamilton system and the geometric Legendre transformation between Lagrange′s equations and Hamilton′s equations were clearly described. Keywords:constrained mechanical systems,Lagrangian submanifold,symplectic manifold,canonical transformation,Legendre transformation 查看全文  查看/发表评论  下载PDF阅读器

 您是第3503623位访问者 版权所有:《动力学与控制学报》 地址：湖南省长沙市湖南大学逸夫楼203室　邮编：410082 E_mail: dlxykzxb@hnu.edu.cn 　电话：0731-88822722 本系统由北京勤云科技发展有限公司设计