首页Home | 期刊简介Intro | 投稿指南Guide | 学术道德与规范Ethics | 征订Subscribe | 预出版OnlineFirst | 收录情况Indexed | 资料下载Download | English

本文引用格式:郭永新,刘世兴.关于分析力学的基础与展望[J].动力学与控制学报,2019,17(5):391~407;   Guo Yongxin,Liu Shixing.The foundation and prospect of analytical mechanics[J].Journal of Dynamics and Control,2019,17(5):391-407.
关于分析力学的基础与展望    点此下载全文
郭永新  刘世兴
辽宁大学 物理学院,沈阳 110036,辽宁大学 物理学院,沈阳 110036
基金项目:国家自然科学基金资助项目(11572145,11872030,11972177,11772144)和辽宁省科技厅资助项目(20180550400)
DOI:10.6052/1672-6553-2019-072
摘要:
      本文从分析约束力学系统的“欠定”问题开始,介绍分析力学的基本变分原理和三类运动微分方程,并分析了分析力学具有普适性之缘由.对非完整约束力学系统,着重分析其动力学建模问题、几何结构和重点发展方向,同时又简要介绍了Birkhoff系统所具有的一般辛结构特征和研究意义,以及需要重点解决的问题.文中对力学系统的Noether对称性和运动微分方程的对称性作了较为详细的论述,并列举了相应实例说明两种对称性与守恒量之间的关系.在几何力学部分,重点介绍了分析力学的辛几何结构和对称性约化理论,包括辛流形的Darboux Moser Weinstein局部正则结构、整体拓扑结构及其对量子力学的影响、Lie群与Lie代数的伴随表示和余伴随表示、动量映射、Cartan辛约化、Marsden Weinstein约化等.文中最后论述了完整与非完整力学系统可积性问题的研究方法和成果,指出了非完整力学系统现有可积性方法的局限性.
关键词:变分原理,非完整力学,Birkhoff系统,对称性,辛几何,对称约化,可积性
The foundation and prospect of analytical mechanics    Download Fulltext
Guo Yongxin  Liu Shixing
Fund Project:
Abstract:
      Starting from the analysis of the under determined problem of constrained mechanical systems, the fundamental variational principles of analytical mechanics and three kinds of differential equations of motion are introduced and the universality of analytical mechanics is analyzed in this paper. For nonholonomic constrained mechanical systems, the dynamic modeling, geometric structure and key development directions are emphatically analyzed. At the same time, the general symplectic structure and research significance of Birkhoffian systems are briefly introduced, as well as the key problems to be solved. The Noether symmetry of mechanical systems and the symmetry of differential equations of motion are discussed in detail, and corresponding examples are given to illustrate the relationship between the two symmetries and conserved quantities. In the part of geometric mechanics, the symplectic geometric structure and symmetry reduction theory of analytical mechanics are mainly described, including local canonical structure of symplectic manifolds by Darboux Moser Weinstein theorem, global topological structure and its influence on quantum mechanics, adjoint and co adjoint representation of Lie group and Lie algebra, momentum mapping, Cartan symplectic reduction, Marsden Weinstein reduction and so on. At the end of the paper, the research methods and results of the integrability of holonomic and nonholonomic mechanical systems are discussed, and the limitations of the existing integrability methods of nonholonomic mechanical systems are pointed out.
Keywords:variational principles,nonholonomic mechanics,Birkhoffian systems,symmetries,sympletic geometry,symmetry reduction,integrability
查看全文  查看/发表评论  下载PDF阅读器

您是第3410102位访问者

版权所有:《动力学与控制学报》
地址:湖南省长沙市湖南大学逸夫楼203室 邮编:410082 E_mail: dlxykzxb@hnu.edu.cn  电话:0731-88822722

本系统由北京勤云科技发展有限公司设计